Emerging Strategies to Better Control Bovine Mastitis: A Perspective for Detection, Diagnosis and Control of Mastitis Pathogens

نوع مقاله : مقاله علمی- ترویجی

نویسندگان

1 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran

2 Agri-Food and Biosciences Institute (AFBI), Hillsborough, BT26 6DR, Northern Ireland, UK

3 Animal Genetics and Breeding Division, Animal Science Research Institute of Iran, Agriculture Research, Education, and Extension Organization, Karaj 31466-18361, Iran

4 Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada

5 School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5AJ, Northern Ireland, UK.

10.22059/domesticsj.2025.401421.1216

چکیده

Bovine mastitis, an inflammation of the mammary gland, is a major economic burden globally. It is mainly caused by bacterial pathogens and manifests in two forms: clinical mastitis, with obvious clinical signs, and subclinical mastitis, characterized by an elevated milk somatic cell count (SCC) (with subclinical mastitis being more common in most dairy herds). The SCC, often transformed into somatic cell score (SCS), is a key indicator of udder health and widely used in genetic evaluations. Mastitis occurrence and severity are influenced by many factors, including pathogen type, the cow’s immune response, environmental conditions, and genetic predisposition. This manuscript offers an overview of bovine mastitis, focusing on recent developments in diagnostic techniques that address infectious agents and non-infectious contributors, aiming to improve control strategies. Mastitis-causing bacteria are categorized into contagious, environmental, and opportunistic bacteria. Contagious bacteria primarily spread during milking, whereas environmental pathogens like Escherichia coli, Klebsiella pneumoniae, and Streptococcus uberis originate from the cow’s surroundings. Streptococcus agalactiae, Staphylococcus aureus, and Mycoplasma bovis are recognized as major contagious pathogens. Opportunistic bacteria, e.g., non-aureus staphylococci, commonly colonize the teat skin. Effective control relies on stringent hygiene during milking and in the cows’ environment, milking equipment maintenance, teat disinfection, appropriate treatment of clinical mastitis and intramammary infections at drying off, and vaccination. Diagnostic approaches have progressed from traditional microscopic examination and SCC testing to rapid cow-side assays, various biosensors, nucleic acid amplification, and genomic analyses. Intrinsic and extrinsic factors significantly influence susceptibility, with older cows and those in early lactation at highest risk. In summary, bovine mastitis is a complex, multifactorial disease that requires an integrated approach combining hygiene, vaccination, genetic improvement, and advanced diagnostics. Addressing both host-related and environmental factors through sustainable herd management is critical to reducing mastitis prevalence, boosting dairy productivity, and enhancing animal welfare worldwide.

کلیدواژه‌ها


عنوان مقاله [English]

Emerging Strategies to Better Control Bovine Mastitis: A Perspective for Detection, Diagnosis and Control of Mastitis Pathogens

نویسندگان [English]

  • Farzad Ghafouri 1 2
  • Masoumeh Naserkheil 3
  • Mostafa Sadeghi 1
  • Seyed Reza Miraei-Ashtiani 1
  • John P. Kastelic 4
  • Herman W. Barkema 4
  • Vahid Razban 2
  • Masoud Shirali 2 5
1 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran
2 Agri-Food and Biosciences Institute (AFBI), Hillsborough, BT26 6DR, Northern Ireland, UK
3 Animal Genetics and Breeding Division, Animal Science Research Institute of Iran, Agriculture Research, Education, and Extension Organization, Karaj 31466-18361, Iran
4 Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
5 School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5AJ, Northern Ireland, UK.
چکیده [English]

Bovine mastitis, an inflammation of the mammary gland, is a major economic burden globally. It is mainly caused by bacterial pathogens and manifests in two forms: clinical mastitis, with obvious clinical signs, and subclinical mastitis, characterized by an elevated milk somatic cell count (SCC) (with subclinical mastitis being more common in most dairy herds). The SCC, often transformed into somatic cell score (SCS), is a key indicator of udder health and widely used in genetic evaluations. Mastitis occurrence and severity are influenced by many factors, including pathogen type, the cow’s immune response, environmental conditions, and genetic predisposition. This manuscript offers an overview of bovine mastitis, focusing on recent developments in diagnostic techniques that address infectious agents and non-infectious contributors, aiming to improve control strategies. Mastitis-causing bacteria are categorized into contagious, environmental, and opportunistic bacteria. Contagious bacteria primarily spread during milking, whereas environmental pathogens like Escherichia coli, Klebsiella pneumoniae, and Streptococcus uberis originate from the cow’s surroundings. Streptococcus agalactiae, Staphylococcus aureus, and Mycoplasma bovis are recognized as major contagious pathogens. Opportunistic bacteria, e.g., non-aureus staphylococci, commonly colonize the teat skin. Effective control relies on stringent hygiene during milking and in the cows’ environment, milking equipment maintenance, teat disinfection, appropriate treatment of clinical mastitis and intramammary infections at drying off, and vaccination. Diagnostic approaches have progressed from traditional microscopic examination and SCC testing to rapid cow-side assays, various biosensors, nucleic acid amplification, and genomic analyses. Intrinsic and extrinsic factors significantly influence susceptibility, with older cows and those in early lactation at highest risk. In summary, bovine mastitis is a complex, multifactorial disease that requires an integrated approach combining hygiene, vaccination, genetic improvement, and advanced diagnostics. Addressing both host-related and environmental factors through sustainable herd management is critical to reducing mastitis prevalence, boosting dairy productivity, and enhancing animal welfare worldwide.

کلیدواژه‌ها [English]

  • Dairy cattle
  • Mastitis
  • Non-pathogens
  • Pathogens
  • Strategies
Adkins, P. R. F., Middleton, J. R., Calcutt, M. J., Stewart, G. C., & Fox, L. K. (2017). “Species identification and strain typing of Staphylococcus agnetis and Staphylococcus hyicus isolates from bovine milk by use of a novel multiplex PCR assay and pulsed-field gel electrophoresis.” Journal of Clinical Microbiology, 55(6), 1778-1788.
Al-Harbi, H., Ranjbar, S., Moore, R. J., & Alawneh, J. I. (2021). “Bacteria isolated from milk of dairy cows with and without clinical mastitis in different regions of Australia and their AMR profiles.” Frontiers in Veterinary Science, 8, 743725.
Ali, A. K. A., & Shook, G. (1980). “An optimum transformation for somatic cell concentration in milk.” Journal of Dairy Science, 63(3), 487-490.
Anis, E., Hawkins, I. K., Ilha, M. R., Woldemeskel, M. W., Saliki, J. T., & Wilkes, R. P. (2018). “Evaluation of targeted next-generation sequencing for detection of bovine pathogens in clinical samples.” Journal of Clinical Microbiology, 56(7), 10-1128.
Ashraf, A., & Imran, M. (2018). “Diagnosis of bovine mastitis: from laboratory to farm.” Tropical Animal Health and Production, 50, 1193-1202.
Asselstine, V., Miglior, F., Suárez-Vega, A., Fonseca, P.A.S., Mallard, B., Karrow, N., Islas-Trejo, A., Medrano, J.F. and Cánovas, A. (2019). “Genetic mechanisms regulating the host response during mastitis.” Journal of Dairy Science, 102(10), 9043-9059.
Bayril, T., Yildiz, A. S., Akdemir, F. A. T. İ. H., Yalcin, C., Köse, M., & Yilmaz, O. (2015). “The technical and financial effects of parenteral supplementation with selenium and vitamin E during late pregnancy and the early lactation period on the productivity of dairy cattle.” Asian-Australasian Journal of Animal Sciences, 28(8), 1133.
Bexiga, R., Koskinen, M. T., Holopainen, J., Carneiro, C., Pereira, H., Ellis, K. A., & Vilela, C. L. (2011). “Diagnosis of intramammary infection in samples yielding negative results or minor pathogens in conventional bacterial culturing.” Journal of Dairy Research, 78(1), 49-55.
Bosward, K. L., House, J. K., Deveridge, A., Mathews, K., & Sheehy, P. A. (2016). “Development of a loop-mediated isothermal amplification assay for the detection of Streptococcus agalactiae in bovine milk.” Journal of Dairy Science, 99(3), 2142-2150.
Bradley, A. J. (2002). “Bovine mastitis: an evolving disease.” The Veterinary Journal, 164(2), 116-128.
Cameron, M., Barkema, H. W., De Buck, J., De Vliegher, S., Chaffer, M., Lewis, J., & Keefe, G. P. (2017). “Identification of bovine-associated coagulase-negative staphylococci by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a direct transfer protocol.” Journal of Dairy Science, 100(3), 2137-2147.
Cheng, W. N., & Han, S. G. (2020). “Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments—A review.” Asian-Australasian Journal of Animal Sciences, 33(11), 1699.
Cho, S. H., Lee, M., Lee, W. H., Seo, S., & Lee, D. H. (2024). “Mastitis classification in dairy cows using weakly supervised representation learning.” Agriculture, 14(11), 2084.
Collier, R. J., Dahl, G. E., & VanBaale, M. J. (2006). “Major advances associated with environmental effects on dairy cattle.” Journal of Dairy Science, 89(4), 1244-1253.
Damm, M., Holm, C., Blaabjerg, M., Bro, M. N., & Schwarz, D. (2017). Differential somatic cell count—A novel method for routine mastitis screening in the frame of Dairy Herd Improvement testing programs. Journal of Dairy Science, 100(6), 4926-4940.
De Buck, J., Ha, V., Naushad, S., Nobrega, D. B., Luby, C., Middleton, J. R., De Vliegher, S. & Barkema, H. W. (2021). “Non-aureus staphylococci and bovine udder health: current understanding and knowledge gaps.” Frontiers in Veterinary Science, 8, 658031.
De Visscher, A., Piepers, S., Haesebrouck, F., & De Vliegher, S. (2016). “Intramammary infection with coagulase-negative staphylococci at parturition: Species-specific prevalence, risk factors, and effect on udder health.” Journal of Dairy Science, 99(8), 6457-6469.
De Vliegher, S., Fox, L. K., Piepers, S., McDougall, S., & Barkema, H. W. (2012). “Invited review: Mastitis in dairy heifers: Nature of the disease, potential impact, prevention, and control.” Journal of Dairy Science, 95(3), 1025-1040.
Dohoo, I. R., & Leslie, K. E. (1991). “Evaluation of changes in somatic cell counts as indicators of new intramammary infections.” Preventive Veterinary Medicine, 10(3), 225-237.
Dohoo, I. R., Smith, J., Andersen, S., Kelton, D. F., Godden, S., & Mastitis Research Workers’ Conference (2011). “Diagnosing intramammary infections: Evaluation of definitions based on a single milk sample.” Journal of Dairy Science, 94(1), 250-261.
Drackley, J. K. (1999). “Biology of dairy cows during the transition period: The final frontier?.” Journal of Dairy Science, 82(11), 2259-2273.
Duarte, C. M., Freitas, P. P., & Bexiga, R. (2015). “Technological advances in bovine mastitis diagnosis: an overview.” Journal of Veterinary Diagnostic Investigation, 27(6), 665-672.
Dufour, S., Fréchette, A., Barkema, H. W., Mussell, A., & Scholl, D. T. (2011). “Invited review: Effect of udder health management practices on herd somatic cell count.” Journal of Dairy Science, 94(2), 563-579.
European Commission, Joint Research Centre. (2020). Certification Report: The certification of the concentration of somatic cells (somatic cell count, SCC) in cow's milk (ERM®-BD001). EUR 30063 EN. https://publications.jrc.ec.europa.eu/repository/bitstream/JRC119607/kjna30063enn.pdf
Ferronatto, J.A., Ferronatto, T.C., Schneider, M., Pessoa, L.F., Blagitz, M.G., Heinemann, M.B., Della Libera, A.M. and Souza, F.N. (2018). “Diagnosing mastitis in early lactation: use of Somaticell®, California mastitis test and somatic cell count.” Italian Journal of Animal Science, 17(3), 723-729.
Fonseca, M., Kurban, D., Roy, J. P., Santschi, D. E., Molgat, E., & Dufour, S. (2025). “Usefulness of differential somatic cell count for udder health monitoring: Effect of intramammary infections, days in milk, quarter location, and parity on quarter-level differential somatic cell count and somatic cell score in apparently healthy dairy cows.” Journal of Dairy Science, 108(4), 3878-3899.
Germon, P., Foucras, G., Smith, D. G., & Rainard, P. (2025). “Invited review: Mastitis Escherichia coli strains: Mastitis-associated or mammo-pathogenic?.” Journal of Dairy Science. 108(5), 4485-4507.
Godden, S. M., Royster, E., Timmerman, J., Rapnicki, P., & Green, H. (2017). “Evaluation of an automated milk leukocyte differential test and the California Mastitis Test for detecting intramammary infection in early-and late-lactation quarters and cows.” Journal of Dairy Science, 100(8), 6527-6544.
Gomes, F., Saavedra, M. J., & Henriques, M. (2016). “Bovine mastitis disease/pathogenicity: evidence of the potential role of microbial biofilms.” FEMS Pathogens and Disease, 74(3), ftw006.
Gonzalo, C., Linage, B., Carriedo, J. A., De la Fuente, F., & San Primitivo, F. (2006). Evaluation of the overall accuracy of the DeLaval cell counter for somatic cell counts in ovine milk. Journal of Dairy Science, 89(12), 4613-4619.
Gonzalo, C., Martínez, J. R., Carriedo, J. A., & San Primitivo, F. (2003). Fossomatic cell-counting on ewe milk: comparison with direct microscopy and study of variation factors. Journal of Dairy Science, 86(1), 138-145.
Graber, H. U., Casey, M. G., Naskova, J., Steiner, A., & Schaeren, W. (2007). “Development of a highly sensitive and specific assay to detect Staphylococcus aureus in bovine mastitic milk.” Journal of Dairy Science, 90(10), 4661-4669.
Gunasekera, T. S., Veal, D. A., & Attfield, P. V. (2003). “Potential for broad applications of flow cytometry and fluorescence techniques in microbiological and somatic cell analyses of milk.” International Journal of Food Microbiology, 85(3), 269-279.
Halasa, T., & Kirkeby, C. (2020). Differential somatic cell count: Value for udder health management. Frontiers in Veterinary Science, 7, 609055.
Hammami, H., Bormann, J., M’hamdi, N., Montaldo, H. H., & Gengler, N. (2013). “Evaluation of heat stress effects on production traits and somatic cell score of Holsteins in a temperate environment.” Journal of Dairy Science, 96(3), 1844-1855.
Harmon, R. J. (1994). “Physiology of mastitis and factors affecting somatic cell counts.” Journal of Dairy Science, 77(7), 2103-2112.
Haxhiaj, K., Wishart, D. S., & Ametaj, B. N. (2022). “Mastitis: What it is, current diagnostics, and the potential of metabolomics to identify new predictive biomarkers.” Dairy, 3(4), 722-746.
Idamokoro, E. M. (2022). “Coagulase-negative staphylococci as an evolving mastitis causing organism in cows: A review.” F1000Research, 11, 824.
Jingar, S. C., Mehla, R. K., & Singh, M. (2014). “Climatic effects on occurrence of clinical mastitis in different breeds of cows and buffaloes.” Archivos de Zootecnia, 63(243), 473-482.
Kandeel, S. A., Megahed, A. A., Ebeid, M. H., & Constable, P. D. (2019). “Ability of milk pH to predict subclinical mastitis and intramammary infection in quarters from lactating dairy cattle.” Journal of Dairy Science, 102(2), 1417-1427.
Keane, O. M. (2019). “Symposium review: Intramammary infections—Major pathogens and strain-associated complexity.” Journal of Dairy Science, 102(5), 4713-4726.
Keister, Z. O., Moss, K. D., Zhang, H. M., Teegerstrom, T., Edling, R. A., Collier, R. J., & Ax, R. L. (2002). “Physiological responses in thermal stressed Jersey cows subjected to different management strategies.” Journal of Dairy Science, 85(12), 3217-3224.
Kerro Dego, O., Aral, F., Payan-Carreira, R., & Cuaresma, M. (2020). “Control and prevention of mastitis: part two.” Animal Reproduction in Veterinary Medicine, Chapter 9, 171.
Khan, M.Z., Huang, B., Kou, X., Chen, Y., Liang, H., Ullah, Q., Khan, I.M., Khan, A., Chai, W. & Wang, C. (2024). “Enhancing bovine immune, antioxidant and anti-inflammatory responses with vitamins, rumen-protected amino acids, and trace minerals to prevent periparturient mastitis.” Frontiers in Immunology, 14, 1290044.
Khatun, M., Clark, C. E., Lyons, N. A., Thomson, P. C., Kerrisk, K. L., & García, S. C. (2017). “Early detection of clinical mastitis from electrical conductivity data in an automatic milking system.” Animal Production Science, 57(7), 1226-1232.
Kibebew, K. (2017). “Bovine mastitis: A review of causes and epidemiological point of view.” Journal of Biology, Agriculture and Healthcare, 7(2), 1-14.
Kim, S., Lim, B., Cho, J., Lee, S., Dang, C.G., Jeon, J.H., Kim, J.M., & Lee, J. (2021). “Genome-wide identification of candidate genes for milk production traits in Korean Holstein cattle.” Animals, 11(5), 1392.
Klaas, I. C., & Zadoks, R. N. (2018). “An update on environmental mastitis: Challenging perceptions.” Transboundary and Emerging Diseases, 65, 166-185.
Kosciuczuk, E. M., Lisowski, P., Jarczak, J., Majewska, A., Rzewuska, M., Zwierzchowski, L., & Bagnicka, E. (2017). “Transcriptome profiling of staphylococci-infected cow mammary gland parenchyma.” BMC Veterinary Research, 13, 1-12.
Krishnamoorthy, K., Pazhamalai, P., Mariappan, V. K., Manoharan, S., Kesavan, D., & Kim, S. J. (2021). “Two‐dimensional siloxene–graphene heterostructure‐based high‐performance supercapacitor for capturing regenerative braking energy in electric vehicles.” Advanced Functional Materials, 31(10), 2008422.
Król, J., Brodziak, A., Litwinczuk, Z., & Litwinczuk, A. (2013). “Effect of age and stage of lactation on whey protein content in milk of cows of different breeds.” Polish Journal of Veterinary Sciences, 16(2).
Li, Y., Fan, P., Zhou, S., & Zhang, L. (2017). “Loop-mediated isothermal amplification (LAMP): A novel rapid detection platform for pathogens.” Microbial Pathogenesis, 107, 54-61.
Lipkens, Z., Piepers, S., De Visscher, A., & De Vliegher, S. (2019). “Evaluation of test-day milk somatic cell count information to predict intramammary infection with major pathogens in dairy cattle at drying off.” Journal of Dairy Science, 102(5), 4309-4321.
Liu, K., Zhang, L., Gu, X., & Qu, W. (2022). “The prevalence of Klebsiella spp. associated with bovine mastitis in China and its antimicrobial resistance rate: a meta-analysis.” Frontiers in Veterinary Science, 9, 757504.
Lücken, A., Woudstra, S., Wente, N., Zhang, Y., & Krömker, V. (2022). “Intramammary infections with Corynebacterium spp. in bovine lactating udder quarters.” PLoS One, 17(7), e0270867.
Lynch, S. A., & Helbig, K. J. (2021). “The complex diseases of Staphylococcus pseudintermedius in canines: where to next?.” Veterinary Sciences, 8(1), 11.
Melchior, M. B., Vaarkamp, H., & Fink-Gremmels, J. (2006). “Biofilms: a role in recurrent mastitis infections?.” The Veterinary Journal, 171(3), 398-407.
Meuwissen, T. H., Hayes, B. J., & Goddard, M. (2001). “Prediction of total genetic value using genome-wide dense marker maps.” Genetics, 157(4), 1819-1829.
Moroni, P., Nydam, D., Ospina, P., Scillieri-Smith, J., Virkler, P., Watters, R., Welcome, F., Zurakowski, M., Ducharme, N. and Yearger, A. (2018). “Diseases of the teats and udder.” In Rebhun's Diseases of Dairy Cattle. Saunders. 389-465
Murphy, J.M. (1947). “The genesis of bovine udder infection and mastitis; the occurrence of streptococcal infection in a cow population during a seven-year period and its relationship to age.” American Journal of Veterinary Research, 8, 29-42.
Murphy, S. C., Martin, N. H., Barbano, D. M., & Wiedmann, M. (2016). “Influence of raw milk quality on processed dairy products: How do raw milk quality test results relate to product quality and yield?.” Journal of Dairy Science, 99(12), 10128-10149.
Nani, J. P., Raschia, M. A., Poli, M. A., Calvinho, L. F., & Amadio, A. F. (2015). “Genome-wide association study for somatic cell score in Argentinean dairy cattle.” Livestock Science, 175, 1-9.
Naserkheil, M., Ghafouri, F., Zakizadeh, S., Pirany, N., Manzari, Z., Ghorbani, S., Banabazi, M. H., Bakhtiarizadeh, M. R., Huq, M. A., Park, M. N., and Barkema, H. W. (2022). “Multi-omics integration and network analysis reveal potential hub genes and genetic mechanisms regulating bovine mastitis.” Current Issues in Molecular Biology, 44(1), 309-328.
Nogalski, Z., Czerpak, K., & Pogorzelska, P. (2011). Effect of automatic and conventional milking on somatic cell count and lactation traits in primiparous cows. Annals of Animal Science, 11(3), 433-441.
Oliveira, M., Bexiga, R., Nunes, S. F., & Vilela, C. L. (2011). “Invasive potential of biofilm-forming Staphylococci bovine subclinical mastitis isolates.” Journal of Veterinary Science, 12(1), 95.
Paape, M. J., Tucker, H. A., & Hafs, H. D. (1965). “Comparison of methods for estimating milk somatic cells.” Journal of Dairy Science, 48(2), 191-196.
Perreten, V., Endimiani, A., Thomann, A., Wipf, J.R., Rossano, A., Bodmer, M., Raemy, A., Sannes-Lowery, K. A., Ecker, D. J., Sampath, R., & Bonomo, R. A. (2013). “Evaluation of PCR electrospray-ionization mass spectrometry for rapid molecular diagnosis of bovine mastitis.” Journal of Dairy Science, 96(6), 3611-3620.
Persson Waller, K., Persson, Y., Nyman, A. K., & Stengärde, L. (2014). “Udder health in beef cows and its association with calf growth.” Acta Veterinaria Scandinavica, 56, 1-8.
Piepers, S., Prenafeta, A., Verbeke, J., De Visscher, A., March, R., & De Vliegher, S. (2017). “Immune response after an experimental intramammary challenge with killed Staphylococcus aureus in cows and heifers vaccinated and not vaccinated with Startvac, a polyvalent mastitis vaccine.” Journal of Dairy Science, 100(1), 769-782.
Plastridge, W. N. (1958). “Bovine mastitis: a review.” Journal of Dairy Science, 41(9), 1141-1181.
Postle, D.S. (1965). “The Wisconsin mastitis test.” The Wisconsin mastitis test. 488-494.
Py, S. (2003). “Indicators of inflammation in the diagnosis of mastitis.” Veterinary Research, 34(5), 565-578.
Pyörälä, S. (2002). “New strategies to prevent mastitis.” Reproduction in Domestic Animals, 37(4), 211-216.
Ramuada, M., Tyasi, T. L., Gumede, L., & Chitura, T. (2024). “A practical guide to diagnosing bovine mastitis: a review.” Frontiers in Animal Science, 5, 1504873.
Rodrigues, A. C. O., Cassoli, L. D., Machado, P. F., & Ruegg, P. L. (2009). “Evaluation of an on-farm test to estimate somatic cell count.” Journal of Dairy Science, 92(3), 990-995.
Royster, E., Godden, S., Goulart, D., Dahlke, A., Rapnicki, P., & Timmerman, J. (2014). “Evaluation of the Minnesota Easy Culture System II Bi-Plate and Tri-Plate for identification of common mastitis pathogens in milk.” Journal of Dairy Science, 97(6), 3648-3659.
Santman-Berends, I. M. G. A., Riekerink, R. O., Sampimon, O. C., Van Schaik, G., & Lam, T. J. G. M. (2012). “Incidence of subclinical mastitis in Dutch dairy heifers in the first 100 days in lactation and associated risk factors.” Journal of Dairy Science, 95(5), 2476-2484.
Sargeant, J. M., Leslie, K. E., Shirley, J. E., Pulkrabek, B. J., & Lim, G. H. (2001). “Sensitivity and specificity of somatic cell count and California Mastitis Test for identifying intramammary infection in early lactation.” Journal of Dairy Science, 84(9), 2018-2024.
Schalm, O.W. (1957). “Experiments and observations leading to development of the California Mastitis Test.” Journal of the American Veterinary Medical Association. 130, 199-204.
Schukken, Y., Wilson, D., Welcome, F., Garrison-Tikofsky, L., & Gonzalez, R. (2003). “Monitoring udder health and milk quality using somatic cell counts.” Veterinary Research, 34(5), 579-596.
Schukken, Y.H., Günther, J., Fitzpatrick, J., Fontaine, M.C., Goetze, L., Holst, O., Leigh, J., Petzl, W., Schuberth, H.J., Sipka, A. and Smith, D.G.E. (2011). “Host-response patterns of intramammary infections in dairy cows.” Veterinary Immunology and Immunopathology, 144(3-4), 270-289.
Shaheen, M., Tantary, H.A., & Nabi, S. U. (2016). “A treatise on bovine mastitis: disease and disease economics, etiological basis, risk factors, impact on human health, therapeutic management, prevention and control strategy.” Advances in Dairy Research, 4, 1-10.
Sharma, N., Singh, N. K., & Bhadwal, M. S. (2011). “Relationship of somatic cell count and mastitis: An overview.” Asian-Australasian Journal of Animal Sciences, 24(3), 429-438.
Shaw, A. O., Hansen, H. C., & Nutting, R. C. (1937). “The reliability of selected tests for the detection of mastitis.” Journal of Dairy Science, 20, 199-203.
Simões Filho, L. M., Lopes, M. A., Brito, S. C., Rossi, G., Conti, L., & Barbari, M. (2020). Robotic milking of dairy cows: a review. Semina: Ciências Agrárias, 41(6), 2833-2850.
Smith, K. L., & Hogan, J. S. (1993). “Environmental mastitis.” Veterinary Clinics of North America: Food Animal Practice, 9(3), 489-498.
Stanek, P., Żółkiewski, P., & Januś, E. (2024). “A Review on mastitis in dairy cows research: Current status and future perspectives.” Agriculture, 14(8), 1292.
Tekle, Y., & Berihe, T. (2016). “Bovine mastitis: prevalence, risk factors and major pathogens in the Sidamo Zone SNNPRS, Ethiopia.” European Journal of Biology and Medical Science Research, 4(5), 27-43.
Thompson, D. I., & Postle, D. S. (1964). “The Wisconsin mastitis test–An indirect estimation of leucocytes in milk.” Journal of Food Protection, 27(9), 271-275.
Tommasoni, C., Fiore, E., Lisuzzo, A., & Gianesella, M. (2023). “Mastitis in dairy cattle: On-farm diagnostics and future perspectives.” Animals, 13(15), 2538.
Vakkamäki, J., Taponen, S., Heikkilä, A. M., & Pyörälä, S. (2017). “Bacteriological etiology and treatment of mastitis in Finnish dairy herds.” Acta Veterinaria Scandinavica, 59, 1-9.
Viguier, C., Arora, S., Gilmartin, N., Welbeck, K., & O’Kennedy, R. (2009). “Mastitis detection: current trends and future perspectives.” Trends in Biotechnology, 27(8), 486-493.
Wiggans, G. R., & Shook, G. E. (1987). “A lactation measure of somatic cell count.” Journal of Dairy Science, 70(12), 2666-2672.
Wu, J., Li, L., Sun, Y., Huang, S., Tang, J., Yu, P., & Wang, G. (2015). “Altered molecular expression of the TLR4/NF-κB signaling pathway in mammary tissue of Chinese Holstein cattle with mastitis.” PLoS One, 10(2), e0118458.
Zadoks, R. N., & Fitzpatrick, J. L. (2009). “Changing trends in mastitis.” Irish Veterinary Journal, 62, 1-12.
Zavadilová, L., Kasna, E., Kucera, J., & Bauer, J. (2022). “Genomic evaluation for clinical mastitis in Czech Holstein.” Interbull Bulletin, (57), 89-94.
Zeinhom, M. M., Aziz, R. L. A., Mohammed, A. N., & Bernabucci, U. (2016). “Impact of seasonal conditions on quality and pathogens content of milk in Friesian cows.” Asian-Australasian Journal of Animal Sciences, 29(8), 1207.
Zhang, M., Luo, H., Xu, L., Shi, Y., Zhou, J., Wang, D., Zhang, X., Huang, X. & Wang, Y. (2022). “Genomic selection for milk production traits in Xinjiang Brown cattle.” Animals, 12(2), 136.
Zhao, Y., Liu, H., Zhao, X., Gao, Y., Zhang, M., & Chen, D. (2015). “Prevalence and pathogens of subclinical mastitis in dairy goats in China.” Tropical Animal Health and Production, 47, 429-435.