ارزیابی روش‌های مختلف هیدرولیز منابع پروتئینی و نقش پپتیدهای حاصل از هیدرولیز در تغذیه و سلامت حیوانات مزرعه‌ای

نوع مقاله : مقاله مروری

نویسندگان

دانشجویان کارشناسی ارشد گرایش تغذیه نشخوارکنندگان، گروه علوم دامی، دانشکده کشاورزی، دانشگاه ارومیه، آذربایجان غربی، ایران

چکیده

در سال‌های اخیر علاقه به استفاده از منابع پروتئین هیدرولیز شده به عنوان منبع غنی از پپتیدها و آمینواسید‌های با کیفیت بالا در تغذیه انسان و دام افزایش یافته است. هیدرولیز می‌تواند به صورت شیمیایی که شامل واکنش‌های اسیدی و قلیایی است و یا به صورت بیولوژیکی توسط آنزیم‌ها و تخمیر، صورت گیرد. هیدرولیز اسیدی روشی است که در آن از ترکیبات اسیدی مانند هیدروکلریک اسید برای از بین بردن پیوند‌های پپتیدی پروتئین‌ها استفاده می‌شود. هیدرولیز قلیایی عمدتاً با سدیم هیدروکسید و پتاسیم هیدروکسید انجام می‌شود. فرایند تجزیه بیولوژیکی پروتئین‌ها به دو روش آنزیمی و تخمیر میکروبی انجام می‌شود. آنزیم‌های پروتئازی بر اساس منشأ تولیدی به سه گروه جانوری، گیاهی و میکروبی تقسیم می‌شوند. در بین آنزیم‌ها آلکالاز با توجه به فعالیت پروتئولیتیکی بالاتر قادر به استخراج بیشتر پروتئین نسبت به سایر آنزیم‌ها است. پپتید‌های زیست فعال توالی آمینواسیدی هستند که از طریق هیدرولیز پروتئینی، تخمیر میکروبی و فرایند هضمی تولید می‌شوند. بسیاری از زیست پپتیدهای حاصل از هیدرولیز منابع گیاهی و حیوانی دارای خاصیت آنتی‌اکسیدانی، ضد میکروبی، ضد فشار خون، و ایمنی هستند و بر عملکرد رشد و سلامتی حیوان و مصرف خوراک تأثیر می‌گذارند. استفاده از این پپتید‌ها در جیره غذایی حیوانات مزرعه‌ای سودمند واقع شده است.

کلیدواژه‌ها


سیفی، م.، رضایی، م. و تیموری یانسری، ا. (1397). "اثر سطوح مختلف پپتیدهای کنجاله سویا بر عملکرد، ریخت شناسی روده و جمعیت میکروبی دستگاه گوارش جوجه های گوشتی." پژوهش‌های تولیدات دامی، ۹(۲۲)، ۹-۱.
چاشنی‎دل، ی.، بهاری، م.، تیموری یانسری، ا. و کاظمی فرد م. (1398). "تأثیر سطوح مختلف مکمل پری بیوتیک و پپتید بر عملکرد رشد، قابلیت هضم ظاهری مواد مغذی و نمره قوام مدفوع بره‌های شیرخوار زل." پژوهش‌های تولیدات دامی، 23(10)، 53-64.
Adrián, S., and Alfredo, V. (2017). “Bioactive peptides: A review.” Food Quality and Safety, (1)1, 29–46.
Bah, A., Lacarrière, C., and Vergne, I. (2016). “Autophagy-related proteins target ubiquitin-free mycobacterial compartment to promote killing in macrophages.” Front Cell Infect Microbiol, (6)53.
Bevins, C.L., and Salzman N.H. (2011). “Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis.” Nat Rev Microbiol, 9(5), 356-368.
Clemente, A., Vioque, J., Sáchez-Vioque, R., Pedroche, J., Bautista, J., and et al. (1999). “Protein quality of chickpea (Cicer arietinum L.) protein hydrolysates.” Food Chemisty, 67(3), 269-274.
Daliri, E.B., Oh, D.H., and Lee, B.H. (2017). “Bioactive Peptides.” Foods, 6(5), 32.
Difo, H.V., Onyike, E., Ameh, D.A., Ndidi, U.S., and Njoku, G.C. (2014). “Chemical changes during open and controlled fermentation of cowpea (Vigna unguiculata) flour.” International Journal of Food Nutrition and Safety, 5(1), 1-10.
Bach, E., Sant’Anna, V., Daroit, D.J., Correa, A.P.F., Segalin, J., and et al. (2012). “Production, one-step purification, and characterization of a keratinolytic proteasefromSerratia marcescensP3.” Process Biochem. 47(12), 2455–2462
Fernstrom, J.D., Langham, K.A., Marcelino L.M., Irvine, Z.L., Fernstrom, M.H., and et al. (2013). “The ingestion of different dietary proteins by humans induces large changes in the plasma tryptophan ratio, a predictor of brain tryptophan uptake and serotonin synthesis.” Clin Nutr, 32(6), 1073-1076.
Fountoulakis, M., and Lahm, H.W. (1998). “Hydrolysis and amino acid composition analysis of proteins.” Journal of Chromatography, 826(2), 109–134.
Froetschel, M.A. (1996). “Bioactive peptides in digesta that regulate gastrointestinal function and intake.” Journal of Animal Science, 74(10), 2500-2508.
Goedeken, F.K., Klopfenstein, T.J., Stock, R.A., and Britton, R.A. (1990).  “Hydrolyzed feather meal as a protein source for growing calves.” Journal of Animal Science, 68(9), 2945-2953.
Hedhili, K., Vauchel, P., Dimitrov, K., Kriaa, K., Chataigné, G., and et al. (2014). “Mechanismand kinetics modeling of the enzymatic hydrolysis of α1-32 antibacterial peptide.” Bioprocess and Biosystems Engineering, 37(7), 1315–1323.
Hou, Y., Wu, Z., Dai, Z., Wang, G., and Wu, G. (2017). “Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance.” Journal of Animal Science and Biotechnology, 8(24).
Isaac, A., Rodriguez-Esteban, C., Ryan, A., Altabef, M., and et al. (1998). “Tbx genes and limb identity in chick embryo development.” Development, 125(10), 1867-1875.
Kalambura, S., Krička, T., Kiš, D., Guberac, S., Kozak, D., and et al. (2016). “High-risk bio waste processing by alkaline hydrolysis and isolation of amino acids.” Technical Gazette, 23(6), 1771-1776.
Karimzadeh, S., Rezaei, M., and Teimouri Yansari, A. (2016) “Effects of canola bioactive peptides on performance, digestive enzyme activities, nutrient digestibility, intestinal morphology and gut microflora in broiler chickens.” Poultry Science Journal, 4(1), 27–36.
López-Barrios, L., Gutiérrez-Uribe, J.A., and Serna-Saldívar, S.O. (2014). “Bioactive peptides and hydrolysates from pulses and their potential use as functional ingredients.” Journal of Food Science, 79(3), 273-283.
Martinez Alvarez, O., Chamorro, S., and Brenes, A. (2015). “Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review.” Food Research International, 73(1), 204-212.
Martínez‐Alvarez, O. (2013). “Hormone‐like peptides obtained by marine‐protein hydrolysis and their bioactivities.” Marine proteins and peptides: Biological Activities and Applications, 351-367.
Meale, S.J., Chaves, A.V., He, M.L., and McAllister, T.A. (2014). “Dose-response of supplementing marine algae (Schizochytrium spp.) On production performance, fatty acid profiles, and wool parameters of growing lambs.” Journal of Animal Science, 92(5), 2202–2213.
Mustatea, G., Ungureanu, E., and Iorga, E. (2019). “Protein acidic hydrolysis for amino acids analysis in food-progress over time: a short review.” Journal of Hygienic Engineering and Design, 26, 81-88
Nielsen, SD., Beverly, R.L., Qu, Y., and Dallas, D.C. (2017). “Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization.” Food Chemisitry, 232, 673-682.
Osho, S.O., Xiao, W.W., and Adeola, O. (2019). “Response of broiler chickens to dietary soybean bioactive peptide and coccidia challenge.” Poultry Science, 98(11), 5669-5678.
Rizzello, C.G., Lorusso, A., Russo,V., Pinto, D., Marzani, B., and et al. (2017). “Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria.” International Journal of Food Microbiology, 241, 252–261.
Ros-Polski, V., Koutchma, T., Xue, J., Defelice, C., and Balamurugan, S. (2015). “Effects of High Hydrostatic Pressure Processing Parameters and NaCl Concentrationon the Physical Properties, Texture and Quality of White Chicken Meat.” Innovative Food Science and Emerging Technologies, 30, 31-42.
Sanjukta, S., Rai, A.K., Muhammed, A., Jeyaram, K., and Talukdar, N.C. (2015). “Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation.” Journal of Functional Foods, 14, 650-658.
Sourabh, A., Rai, A.K., Chauhan, A., Jeyaram, K., Taweechotipatr, M., and et al. (2015). “Health related issues and indigenous fermented products.” In V. K. Joshi (Ed.), Indigenous Fermented Foods of South Asia, 303-343
Sumantha, A., Deepa, P., Sandhya, C., Szakacs, G., Soccol, C.R., and et al. (2006). “Rice bran as a substrate for proteolytic enzyme production.” Brazilian Archives of Biology and Technology, 49(4), 843-851.
Toldrá, F., Reig, M., Aristoy, M.C., and Mora, L. (2018). “Generation of bioactive peptides during food processing.” Food Chemistry, 267,395–404
Wada, Y., and Lönnerdal, B. (2014). “Bioactive peptides derived from human milk proteins – mechanisms of action.” Journal of Nutritional Biochemistry, 25(5), 503–514.
Woyengo, T.A., Slominski, B.A., and Jones, R.O. (2010). “Growth performance and nutrient utilization of broiler chickens fed diets supplemented with phytase alone or in combination with citric acid and multicarbohydrase.” Poultry Science, 89(10), 2221-2229.
Yoo, G.Y., Wang, X., Choi, S., Han, K., Kang, J.C., and et al. (2005). “Dietary microbial phytase increased the phosphorus digestibility in juvenile Korean rockfish Sebastes schlegeli fed diets containing soybean meal.” Aquaculture, 243(1-4), 315-322.
Zapata-Peñasco, I., Salazar-Coria, L., Saucedo-García, M., Villa-Tanaca, L., and Hernández-Rodríguez, C. (2016). “Bisulfite reductase gene expression of thermophilic sulphate-reducing bacteria from saline connate water of oil reservoirs with high temperature.” International Biodeterioration & Biodegradation, 108, 198-206.