مروری نوین بر مکانیسم زمستان‌گذرانی حاکم در حشرات : با تاکید بر نقش ژن‌های کاندید در زنبورعسل

نوع مقاله : مقاله علمی- ترویجی

نویسندگان

1 دانشجوی کارشناسی‌ارشد ژنتیک و اصلاح نژاد دام، گروه مهندسی علوم دامی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، آذربایجان شرقی، ایران

2 دانشجوی کارشناسی‌ارشد پرورش زنبورعسل، گروه مهندسی علوم دامی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، آذربایجان شرقی، ایران

3 دانشیار گرایش ژنتیک و اصلاح‌نژاد دام، گروه مهندسی علوم دامی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، آذربایجان شرقی، ایران

4 دانشیار گرایش تغذیه طیور، گروه مهندسی علوم دامی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، آذربایجان شرقی، ایران

چکیده

پرورش زنبورعسل با توجه به وابستگی مطلق آن به آب و هوا همیشه چالش برانگیز و پر مخاطره بوده است که در این راستا یکی از چالش‌هایی که اقتصاد پرورش حشرات خصوصا زنبورعسل را تحت شعاع قرار می‌دهد، مواجهه با آب و هوای سرد و زمستان گذرانی می‎باشد. زنبور عسل در برخی موارد، نسبت به دمای بسیار پایین مانند40- درجه سانتی‌گراد یا حتی پایین‌تر از 60- درجه سانتی‌گراد مقاومت دارد. توانایی مقاومت به سرما با کاهش اندازه بدن و مقدار آب و با تجمع املاح با جرم مولکولی کم افزایش می‌یابد. برای پی بردن به عملکرد این مکانیسم‌ها نیاز به پرده برداری از حضور جهش‌های مسئول در ژن کاندید مرتبط با این پدیده می‌باشد. این ژن‌ها بسیار متنوع بوده و به طور کلی به سه دسته‌ تقسیم می‌شوند؛ ژن‌های مربوط به مسیرهای سیگنالینگ، ژن‌های مربوط به تولید مواد ضدیخ (ژن‌های تولید گلیسرول، ژن‌های تولید پروتئین‌های ضدیخ) و ژن‌های مربوط به تنظیم زمان زمستان‌گذرانی (ژن‌های مربوط به ساعت بیولوژیکی، ژن‌های مربوط به حسگرهای نور، ژن‌های مربوط به حسگرهای دما و ژن‌های مربوط به هورمون‌های زمستان‌گذرانی). ژن‌های مسیر سیگنالینگ خود به زیر مجموعۀ ژن‌های مسیر انسولین (IGF1R, Akt, FOXO, PI3K, PTEN)، ژن‌های مسیر JAK/STAT (JAK، STAT و گیرنده‌های سیتوکین)، ژن‌های مسیر TOR (TOR, Raptor, Rictor, S6K1)، ژن‌های مسیر AMPK (AMPKγ, AMPKα, AMPKβ)، ژن‌های مسیر Wnt (β-catenin, Wnt, TCF/LEF) و ژن‌های مسیر Hedgehog (Hedgehog, Patched) تقسیم می‌شود. این مقاله سعی دارد در یک نگرش اجمالی خوانندگان و مخاطبان علاقمند را با اطلاعات جدید و بروز این حوزه مطالعاتی آشنا کند.

کلیدواژه‌ها


عنوان مقاله [English]

A novel review on the overwintering mechanisms in insects with an emphasis on candidate genes in honey bees

نویسندگان [English]

  • Mahsa Rostamzadeh 1
  • Zoha Haddad 2
  • Arash Javanmard 3
  • Ruhollah Kianfar 4
1 M.Sc. Student of Animal Breeding and Genetics, Department of Animal Sciences, Faculty of Agriculture at the University of Tabriz, Tabriz, East Azerbaijan, Iran
2 M.Sc. Student of Honey Bee Breeding, Department of Animal Sciences, Faculty of Agriculture at the University of Tabriz, Tabriz, East Azerbaijan, Iran
3 Associate Professor of Animal Breeding and Genetics, Department of Animal Sciences, Faculty of Agriculture at the University of Tabriz, Tabriz, East Azerbaijan, Iran
4 Associate Professor of Poultry Nutrition, Department of Animal Sciences, Faculty of Agriculture at the University of Tabriz, Tabriz, East Azerbaijan, Iran
چکیده [English]

For beekeepers, honey bees have always given serious risks and challenges due to their complete confidence in the climate. The fight with cold winters is one of the most important problems influencing the economy of insects, especially honeybees. In certain situations, honey bees can tolerate extremely low temperatures -40 °C or below -60 °C to survive in cold climates. Honeybees have developed complex defense mechanisms. To keep the heat, group in the beehive in winter to form a dense mass. They also produce warmth by pulling their muscles together and keeping energy from pollen and honey. Wax and pollen ensure the beehive, and the production of frost protection proteins stops the heat loss and freezing of the water in the bee bodies. Bees consume less energy in winter because they are less active. The essential losses of the winter colony of commercial beekeepers in the United States require methods to overcome bees in environments to reduce these losses. Finding the underlying mutations in the candidate genes associated with this phenomenon is of essential importance for understanding these mechanisms. These genes are very different and can be roughly divided into three groups: genes involved in the signal path, genes involved in the production of antifreeze, and genes involved in the time of the winter diapause. Insulinway-gen (IGF-1 receptor, protein kinase B, Foxo, Pi3k, Pten), JAK/Stat-Pathway-Gen (JAK, Stat, Cytokineceptors), Tor-Pathway-gene (Gate, Raptor, Rictor, S6K1), AMPK, AMPK, AMPK-Pathway-gen gene (AMPKα, AMPKβ, AMPKY), Wnt-Pathway-gene (β-catenin, Wnt, TCF/LEF) and hedgehog path (hedgehog) further into the parts of the Parts of the parts of the Signalway Gen. Glycerin and Freostraf protein gene are examples of genes that produce frost protection. The genes that control the biological clock, light and temperature sensors as well as diapause hormones are part of the Winterdiapause -Timing -Gens. This review aims to give interested readers and researchers a brief summary of the latest developments in this area of study.

کلیدواژه‌ها [English]

  • Candidate Genes
  • Genetic resistance
  • Honey bee
  • Wintering
Aizen, M.A., Garibaldi, L.A., Cunningham, S.A. and Klein, A.M. (2008). "Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency." Current biology, 18, 1572-75.
Amdam, G.V., Aase, A.L.T., Seehuus, S.C., Fondrk, M.K., Norberg, K. and et al. (2005). "Social reversal of immunosenescence in honey bee workers." Experimental gerontology, 40(12), 939-947.
Amdam, G.V., Norberg, K., Hagen, A. and Omholt, S.W. (2003). "Social exploitation of vitellogenin." Proceedings of the national academy of sciences, 100(4), 1799-1802.
Amdam, G.V., Simões, Z.L., Hagen, A., Norberg, K., Schrøder, K., and et al. (2004). "Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees." Experimental gerontology, 39(5), 767-773.
Amdam, G.V., and Omholt, S.W. (2003). "The hive bee to forager transition in honeybee colonies: the double repressor hypothesis." Journal of theoretical biology, 223(4), 451-464.
Anderson, T.A., Levitt, D.G., and Banaszak, L.J. (1998). "The structural basis of lipid interactions in lipovitellin, a soluble lipoprotein." Structure, 6(7), 895-909.
Baker, M.E. (1988). "Invertebrate vitellogenin is homologous to human von Willebrand factor." Biochemical Journal, 256(3), 1059.
Cadigan, K.M., and Waterman, M.L. (2012). "TCF/LEFs and Wnt signaling in the nucleus." Cold Spring Harbor perspectives in biology, 4(11), a007906.
Daly, A.K., and Day, C.P. (2001). "Candidate gene case‐control association studies: advantages and potential pitfalls." British journal of clinical pharmacology, 52(5), 489-499.
Damulewicz, M., and Mazzotta, G.M. (2020). "One actor, multiple roles: the performances of cryptochrome in Drosophila." Frontiers in physiology, 11, 99.
Dunatov Huljev, A., Kelam, N., Benzon, B., Šoljić, V., Filipović, N., and et al. (2023). "Expression pattern of sonic Hedgehog, patched and smoothened in clear cell renal carcinoma." International journal of molecular sciences, 24(10), 8935.
Eskandari, A., Leow, T.C., Rahman, M.B.A., and Oslan, S.N. (2020). "Antifreeze proteins and their practical utilization in industry, medicine, and agriculture." Biomolecules, 10(12), 1649.
Finn, R.N. (2007). "Vertebrate yolk complexes and the functional implications of phosvitins and other subdomains in vitellogenins." Biology of Reproduction, 76(6), 926-935.
Gharib, G., Saeidiharzand, S., Sadaghiani, A.K., and Koşar, A. (2022). "Antifreeze proteins: a tale of evolution from origin to energy applications." Frontiers in Bioengineering and Biotechnology, 9, 770588.
Guidugli-Lazzarini, K.R., do Nascimento, A.M., Tanaka, E.D., Piulachs, M.D., Hartfelder, K., and et al. (2008). "Expression analysis of putative vitellogenin and lipophorin receptors in honey bee (Apis mellifera L.) queens and workers." Journal of insect physiology, 54(7), 1138-1147.
Guidugli, K.R., Nascimento, A.M., Amdam, G.V., Barchuk, A.R., and et al. (2005). "Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect." FEBS letters, 579(22), 4961-4965.
Güneşdoğdu, M., Sarıoğlu-Bozkurt, A., Şekeroğlu, A., and Abacı, S.H. (2024). "Changes in vitellogenin, abdominal lipid content, and hypopharyngeal gland development in honey bees fed diets with different protein sources." Insects, 15(4), 215.
Hastings, M. (1998). "The brain, circadian rhythms, and clock genes." Bmj, 317, 1704-07.
Hopkins, B.K., Chakrabarti, P., Lucas, H.M., Sagili, R.R., and Sheppard, W.S. (2021). "Impacts of different winter storage conditions on the physiology of diutinus honey bees (Hymenoptera: Apidae)." Journal of Economic Entomology, 114(1), 409-414.
Inoki, K., Ouyang, H., Li, Y., and Guan, K.L. (2005). "Signaling by target of rapamycin proteins in cell growth control." Microbiology and Molecular Biology Reviews, 69(1), 79-100.
Iwasaki, J.M., and Hogendoorn, K. (2021). "How protection of honey bees can help and hinder bee conservation." Current Opinion in Insect Science, 46, 112-118.
Kabir, M.H., Patrick, R., Ho, J.W., and O’Connor, M.D. (2018). "Identification of active signaling pathways by integrating gene expression and protein interaction data." BMC systems biology, 12, 77-87.
Kent, C.F., Issa, A., Bunting, A.C., and Zayed, A. (2011). "Adaptive evolution of a key gene affecting queen and worker traits in the honey bee, Apis mellifera." Molecular Ecology, 20(24), 5226-5235.
Kim, H.J., Lee, J.H., Hur, Y.B., Lee, C.W., Park, S.H., and et al. (2017). "Marine antifreeze proteins: structure, function, and application to cryopreservation as a potential cryoprotectant." Marine drugs, 15(2), 27.
Knoll, S., Pinna, W., Varcasia, A., Scala, A., and Cappai, M.G. (2020). "The honey bee (Apis mellifera L., 1758) and the seasonal adaptation of productions. Highlights on summer to winter transition and back to summer metabolic activity: A review." Livestock Science, 235, 104011.
Leipart, V., Ludvigsen, J., Kent, M., Sandve, S., To, T.H., and et al. (2022a). "Identification of 121 variants of honey bee Vitellogenin protein sequences with structural differences at functional sites." Protein Science, 31(7), e4369.
Leipart, V., Montserrat‐Canals, M., Cunha, E.S., Luecke, H., Herrero‐Galán, E., and et al. (2022b). "Structure prediction of honey bee vitellogenin: a multi‐domain protein important for insect immunity." FEBS Open Bio, 12(1), 51-70.
Liénard, M.A., Baez-Nieto, D., Tsai, C.C., Valencia-Montoya, W.A., Werin, B., and et al. (2024). "TRPA5 encodes a thermosensitive ankyrin ion channel receptor in a triatomine insect." Iscience, 27(4).
Lin, Y., He, L., Cai, Y., Wang, X., Wang, S., and et al. (2024). "The role of circadian clock in regulating cell functions: implications for diseases." MedComm, 5(3), p.e504.
Logsdon Jr, J.M., and Doolittle, W.F. (1997). "Origin of antifreeze protein genes: a cool tale in molecular evolution." Proceedings of the National Academy of Sciences, 94(8), 3485-3487.
Lv, Y., Qi, J., Babon, J.J., Cao, L., Fan, G., and et al. (2024). "The JAK-STAT pathway: from structural biology to cytokine engineering." Signal Transduction and Targeted Therapy, 9(1), 221.
Meuti, M.E., Stone, M., Ikeno, T., and Denlinger, D.L. (2015). "Functional circadian clock genes are essential for the overwintering diapause of the Northern house mosquito, Culex pipiens." Journal of Experimental Biology, 218(3), 412-422.
Münch, D., Amdam, G.V., and Wolschin, F. (2008). "Ageing in a eusocial insect: molecular and physiological characteristics of life span plasticity in the honey bee." Functional ecology, 22(3), 407-421.
Münch, D., and Amdam, G.V. (2010). "The curious case of aging plasticity in honey bees." FEBS letters, 584(12), 2496-2503.
Nair, A., Chauhan, P., Saha, B., and Kubatzky, K.F. (2019). "Conceptual evolution of cell signaling." International Journal of Molecular Sciences, 20(13), 3292.
Nandagopal, N., and Roux, P.P. (2015). "Regulation of global and specific mRNA translation by the mTOR signaling pathway." Translation, 3(1), e983402.
Nelson, C.M., Ihle, K.E., Fondrk, M.K., Page Jr, R.E., and Amdam, G.V. (2007). "The gene vitellogenin has multiple coordinating effects on social organization." PLoS biology, 5(3), e62.
Nur Aliah, N.A., Ab-Rahim, S., Moore, H.E., and Heo, C.C. (2021). "Juvenile hormone: Production, regulation, current application in vector control and its future applications." Tropical Biomedicine, 38, 254-64.
Owens, C.D. (1971). "The thermology of wintering honey bee colonies (No. 1429)." US Agricultural Research Service.
Piulachs, M.D., Guidugli, K.R., Barchuk, A.R., Cruz, J., Simões, Z.L.P., and et al. (2003). "The vitellogenin of the honey bee, Apis mellifera: structural analysis of the cDNA and expression studies." Insect biochemistry and molecular biology, 33(4), 459-465.
Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O., and et al. (2010). "Global pollinator declines: trends, impacts and drivers." Trends in ecology & evolution, 25(6), 345-353.
Pua, L.J.W., Mai, C.W., Chung, F.F.L., Khoo, A.S.B., Leong, C.O., and et al. (2022). "Functional roles of JNK and p38 MAPK signaling in nasopharyngeal carcinoma." International journal of molecular sciences, 23(3), 1108.
Robinson, G.E., Page Jr, R.E., Strambi, C., and Strambi, A. (1992). "Colony integration in honey bees: mechanisms of behavioral reversion." Ethology, 90(4), 336-348.
Roux, P.P., and Topisirovic, I. (2018). "Signaling pathways involved in the regulation of mRNA translation." Molecular and cellular biology, 38(12), e00070-18.
Sánchez-Bayo, F., and Wyckhuys, K.A. (2019). "Worldwide decline of the entomofauna: A review of its drivers." Biological conservation, 232, 8-27.
Sappington, T.W., and Raikhel, A.S. (1998). "Molecular characteristics of insect vitellogenins and vitellogenin receptors." Insect biochemistry and molecular biology, 28(5-6), 277-300.
Seehuus, S.C., Norberg, K., Gimsa, U., Krekling, T., and Amdam, G.V. (2006). "Reproductive protein protects functionally sterile honey bee workers from oxidative stress." Proceedings of the National Academy of Sciences, 103(4), 962-967.
Sømme, L. (1964). "Effects of glycerol on cold-hardiness in insects." Canadian Journal of Zoology, 42(1), 87-101.
Stabentheiner, A., Pressl, H., Papst, T., Hrassnigg, N., and Crailsheim, K. (2003). "Endothermic heat production in honeybee winter clusters." Journal of Experimental Biology, 206(2), 353-358.
Trenczek, T., and Engels, W. (1986). "Occurrence of vitellogenin in drone honeybees (Apis mellifica)." International journal of invertebrate reproduction and development, 10(3), 307-311.
Tufail, M., and Takeda, M. (2008). "Molecular characteristics of insect vitellogenins." Journal of insect physiology, 54(12), 1447-1458.
Urbanek, K., Lesiak, M., Krakowian, D., Koryciak-Komarska, H., Likus, W., and et al. (2017). "Notch signaling pathway and gene expression profiles during early in vitro differentiation of liver-derived mesenchymal stromal cells to osteoblasts." Laboratory Investigation, 97(10), 1225-1234.
Xu, Z., Yu, Y., Zhao, H., Zhang, Y., Wang, L., and et al (2022). "Expression patterns of AMPK and genes associated with lipid metabolism in newly hatched chicks during the metabolic perturbation of fasting and refeeding." Poultry Science, 101(12), 102231.
Zhao, D., Zheng, C., Shi, F., Xu, Y., Zong, S., and et al. (2021). "Expression analysis of genes related to cold tolerance in Dendroctonus valens." PeerJ, 9, e10864.
Zhao, R., Hu, Z., Zhang, X., Huang, S., Yu, G., and et al. (2024). "The oncogenic mechanisms of the Janus kinase-signal transducer and activator of transcription pathway in digestive tract tumors." Cell Communication and Signaling, 22(1), 68.