چشم‌اندازهای ژنتیکی استرس گرمایی بر باروری گاوهای شیری؛ دیدگاه‌های اخیر مبتنی بر نشانگرهای ژنتیکی، شبکه‌های ژنی و مسیرهای متابولیکی- سیگنالی

نوع مقاله : مقاله علمی- ترویجی

نویسندگان

1 دانشجوی کارشناسی‌ارشد ژنتیک و اصلاح نژاد دام و طیور، گروه مهندسی علوم دامی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، کرج، البرز، ایران

2 استاد ژنتیک و اصلاح نژاد دام و طیور، گروه مهندسی علوم دامی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، کرج، البرز، ایران

3 دانشیار ژنتیک و اصلاح نژاد دام و طیور، گروه مهندسی علوم دامی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، کرج، البرز، ایران

4 دانشجوی دکتری تخصصی ژنتیک و اصلاح نژاد دام و طیور، گروه مهندسی علوم دامی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، کرج، البرز، ایران

چکیده

گاوهای هلشتاین، به دلیل قابلیت بالا در تولید مقادیر شیر و سازگاری با شرایط مختلف آب و هوایی، یکی از مهم‌ترین نژادهای گاوهای شیرده در جهان محسوب می‌شوند. استرس گرمایی به عنوان چالشی عظیم برای صنعت پرورش گاوهای شیرده، به ویژه، در مناطق گرمسیری و نیمه‌ گرمسیری می‌تواند پیامدهای منفی بر قابلیت تولید شیر، توان باروری و همچنین سلامت عمومی گاوهای شیرده داشته باشد. این تأثیرات، شامل کاهش مصرف ماده خشک، افزایش دمای رکتال و میزان تنفس و اُفت تولید شیر و کیفیت آن می‌باشد. همچنین، استرس گرمایی می‌تواند باعث اختلالات در محیط داخل رحمی و کاهش میزان وزن و قد گوساله‌های متولد شده از گاوهای تحت استرس گرمایی شود. مطالعات مختلف نشان داده‌اند که استرس گرمایی می‌تواند بر مورفولوژی، متیلاسیون DNA و بیان ژنی کبد و پستان تأثیر بگذارد. همچنین، گزارش شده است که استرس گرمایی الگوی متیلاسیون DNA کبد و غدۀ پستان را تغییر داده و در طول دورۀ خشکی می‌تواند توسعۀ غدۀ پستان را تحت تأثیر قرار دهد و منجر به اُفت تولید شیر شود. از طرف دیگر، اثبات شده است که استرس گرمایی می‌تواند بر متابولیسم انرژی و نوکلئوتید در گاوهای شیرده تأثیر داشته باشد. برای مقابله با استرس گرمایی، راهبُرد‌های مختلفی از جمله مدیریت تغذیه، هورمون‌تراپی و استفاده از سیستم‌های خنک‌کننده پیشنهاد شده است. در مطالعه حاضر، با استفاده از مرور منابع و ترسیم شبکه اثرمتقابل پروتئین- پروتئین، 9 ژن هاب (IGF1R، CASP3، CALR، ATG3، ATG5، CASP8، HMOX1، BECN1 و HSPA1A) درگیر در استرس گرمایی گاوهای شیرده شناسایی شد. این ژن‌ها در تنظیم پاسخ سلولی به استرس، اتصال پروتئین استرس گرمایی، ساختار آناتومی داخل سلولی، سنتز هورمون‌های تیروئیدی و پاراتیروئیدی و همچنین، مسیرهای سیگنالی PI3K-Akt، AMPK، MAPK، IL-17، mTOR، GnRH، TNF دخیل بودند. در این راستا، انتخاب و اصلاح‌نژاد گاوهای شیرده با ژنوتیپ مقاوم به استرس گرمایی از طریق ادغام لایه‌های مختلف تکنولوژی اُمیکس و نشانگرهای ژنتیکی می‌تواند به طور قابل توجهی عملکرد تولیدی و تولیدمثلی را در گاوهای شیرده بهبود بخشد و گام شروع‌کننده برای مطالعات آینده در مورد استرس گرمایی در گاوهای شیرده در نظر گرفته شود.

کلیدواژه‌ها


عنوان مقاله [English]

The genetic landscapes of heat stress on dairy cattle fertility; recent insights based on genetic markers, gene networks, and metabolic-signaling pathways

نویسندگان [English]

  • Seyed Midia Pirkhezranian 1
  • Seyed Reza Miraei-Ashtiani 2
  • Mostafa Sadeghi 3
  • Farzad Ghafouri 4
1 M.Sc. Student of Animal and Poultry Breeding & Genetics, Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran
2 Professor of Animal Breeding and Genetics, Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran
3 Associate Professor of Animal Breeding and Genetics, Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran
4 Ph.D. Candidate of Animal and Poultry Breeding & Genetics, Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran
چکیده [English]

Holstein cows are considered one of the most important dairy cattle breeds in the world due to their exceptional milk production ability and adaptability to various climatic conditions. Heat stress represents a major challenge for the dairy industry, particularly in tropical and subtropical regions, as it negatively impacts milk production, fertility and the overall health of dairy cows. Consequences of heat stress include decreased dry matter intake, increased rectal temperature and respiratory rate, and decreased milk production and quality. In addition, heat stress can disrupt the intrauterine environment and cause the calves of heat-stressed cows to have lower weight and size. Numerous studies have shown that heat stress affects morphology, DNA methylation, and gene expression in both liver and breast tissue. Heat stress has also been observed to alter DNA methylation patterns of the liver and mammary gland, which negatively impacts mammary gland development during the dry period, which may subsequently lead to reduced milk production. Additionally, heat stress has been shown to affect energy metabolism and nucleotides in dairy cows. Various strategies have been proposed to alleviate heat stress, including nutritional management, hormonal therapy, and the introduction of cooling systems. In this study, nine hub genes (IGF1R, CASP3, CALR, ATG3, ATG5, CASP8, HMOX1, BECN1, and HSPA1A) involved in heat stress in dairy cows were identified through a literature review and construction of a protein-protein interaction network. These genes are crucial in the regulation of cellular responses to stress, binding of heat shock proteins, intracellular anatomical structure and synthesis of thyroid and parathyroid hormones, as well as various signaling pathways including PI3K-Akt, AMPK, MAPK, IL-17, mTOR, GnRH, and TNF. In this context, selecting and breeding dairy cows with heat stress-resistant genotypes by integrating different layers of omics technology and genetic markers can significantly increase production and reproductive performance. This approach may serve as a fundamental step for future studies addressing heat stress in dairy cattle.

کلیدواژه‌ها [English]

  • Dairy cattle
  • Fertility
  • Gene networks
  • Heat stress
  • Metabolic-signaling pathways
باباعباسی، ب.، 1395. بیوانفورماتیک سلولی و مولکولی، پژوهشگاه رویان، پژوهشکده زیست‌شناسی و علوم پزشکی تولیدمثل جهاد دانشگاهی، مرکز تحقیقات پزشکی تولیدمثل، گروه ژنتیک، تهران، ایران: 9 - 318
Aguilar, I., Misztal, I., and Tsuruta, S. (2010) “Genetic trends of milk yield under heat stress for US Holsteins.” Journal of Dairy Science. 93(4), 1754–8.
Berman, A. (2005). “Estimates of heat stress relief needs for Holstein dairy cows.” Journal of Animal Science, 83(6), 1377–1384.
Chebel, R. C., Santos, J. E., Reynolds, J. P., Cerri, R. L., Juchem, S. O., and et al. (2004). “Factors affecting conception rate after artificial insemination and pregnancy loss in lactating dairy cows.” Animal Reproduction Science. 84(3–4), 239–55.
Chebel, R. C., Santos, J. E., Reynolds, J. P., Cerri, R. L., Juchem, S. O., and et al. (2004). “Factors affecting conception rate after artificial insemination and pregnancy loss in lactating dairy cows.” Animal Reproduction Science, 84(3-4), 239–255.
Cowley, F.C. Barber, D.G. Houlihan, A.V. and Poppi, D.P. (2015) “Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism.” Journal of Dairy Science. 98, 2356–2368.
Cuellar, C.J., Saleem, M., Jensen, L.M. and Hansen, P.J., (2023). “Differences in body temperature regulation during heat stress and seasonal depression in milk yield between Holstein, Brown Swiss, and crossbred cows.” Journal of Dairy Science, 106(5), 3625-3632.
Dado-Senn, B., Skibiel, A. L., Fabris, T. F., Zhang, Y., Dahl, G. E., and et al. (2018). “RNA-Seq reveals novel genes and pathways involved in bovine mammary involution during the dry period and under environmental heat stress.” Scientific Reports, 8(1), 11096.
Dahl, G. E., Tao, S., and Laporta, J. (2017). “Late gestation heat stress of dairy cattle programs dam and daughter milk production.” Journal of Animal Science, 95, 5701-5710.
De Rensis, F., Garcia-Ispierto, I., and López-Gatius, F. (2015). “Seasonal heat stress: Clinical implications and hormone treatments for the fertility of dairy cows.” Theriogenology, 84(5), 659–666.
do Amaral, B. C., Connor, E. E., Tao, S., Hayen, J., Bubolz, J., and et al. (2009). “Heat-stress abatement during the dry period: does cooling improve transition into lactation?” Journal of Animal Science, 92(12), 5988–5999.
Fabris, T. F., Laporta, J., Corra, F. N., Torres, Y. M., Kirk, D. J., and et al. (2017). “Effect of nutritional immunomodulation and heat stress during the dry period on subsequent performance of cows.” Journal of Animal Science, 100(8), 6733–6742.
Fabris, T. F., Laporta, J., Skibiel, A. L., Dado-Senn, B., Wohlgemuth, S. E., and et al. (2020). “Effect of heat stress during the early and late dry period on mammary gland development of Holstein dairy cattle.” Journal of Dairy Science, 103(9), 8576–8586.
Fan, C., Su, D., Tian, H., Li, X., Li, Y., and et al. (2018). “Liver metabolic perturbations of heat-stressed lactating dairy cows.” Asian-Australasian Journal of Animal Sciences, 31'(8), 1244–1251.
Ferreira, F. C., Gennari, R. S., Dahl, G. E., and De Vries, A. (2016). “Economic feasibility of cooling dry cows across the United States.” Journal of Animal Science, 99(12), 9931–9941.
Flamenbaum, I., Galon, N. (2010). “Management of heat stress to improve fertility in dairy cows in Israel.” Journal of Reproduction and Development, 56 (Suppl), S36-41.
Funk, D. A. (1993). “Optimal genetic improvement for the high producing herd. Journal of Dairy Science. 76(10), 3278–3286.
Furey, T. S. (2012). “ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions.” Nature Reviews Genetics. 2012, 840–852.
Gao, S. T., Guo, J., Quan, S. Y., Nan, X. M., Fernandez, M. S., and et al. (2017). “The effects of heat stress on protein metabolism in lactating Holstein cows.” Journal of Dairy Science, 100(6), 5040-5049.
Gao, S. T., Lu Ma, Zheng Zhou, Z. K. Zhou, Lance H. and et al. (2019). “Heat stress negatively affects the transcriptome related to overall metabolism and milk protein synthesis in mammary tissue of midlactating dairy cows.” Physiological Genomics. 51(8), 400–9.
Gupta, S., Sharma, A., Joy, A., Dunshea, F. R., and Chauhan, S. S. (2022). “The impact of heat stress on immune status of dairy cattle and strategies to ameliorate the negative effects.” Animals, 13(1), 107.
Habimana, V., Nguluma, A.S., Nziku, Z.C., Ekine-Dzivenu, C.C., Morota, G., and et al (2023). “Heat stress effects on milk yield traits and metabolites and mitigation strategies for dairy cattle breeds reared in tropical and sub-tropical countries.” Frontiers in Veterinary Science, 10, 1121499.
Hahn, G. L., Mader, T. L., and Eigenberg, R. A. (2003). “Perspective on development of thermal indices for animal studies and management.” Interaction between Climate and Animal Production, 31–44.
Han, Z.Y. Mu, T. and Yang, Z. (2015). “Methionine protects against hyperthermia-induced cell injury in cultured bovine mammary epithelial cells.” Cell Stress Chaperon, 20, 109–120.
Hu, H., Wang, J., Gao, H., Li, S., Zhang, Y., and et al. (2016). “Heat-induced apoptosis and gene expression in bovine mammary epithelial cells.” Animal Production Science. 56, 918.
Kadzere, C. T., Murphy, M. R., Silanikove, N., and Maltz, E. (2002). “Heat stress in lactating dairy cows: a review.” Livestock Production Science. 77, 59-91.
Koch, F., Lamp, O., Eslamizad, M., Weitzel, J., and Kuhla, B. (2016). “Metabolic response to heat stress in late-pregnant and early lactation dairy cows: Implications to Liver-Muscle Crosstalk.” PloS One, 11(8), e0160912.
Li, G., Yu, X., Portela Fontoura, A. B., Javaid, A., de la Maza-Escolà, V. S., and et al. (2023). “Transcriptomic regulations of heat stress response in the liver of lactating dairy cows.” BMC Genomics, 24(1), 410.
Li, L., Sun, Y., Wu, J., Li, X., Luo, M., and et al. (2015). “The global effect of heat on gene expression in cultured bovine mammary epithelial cells.” Cell Stress Chaperon. 20, 381–389.
Mader, T. L., Davis, M., and Brown-Brandl T. (2006). “Environmental factors influencing heat stress in feedlot cattle.” Journal of Animal Science. 84(3), 712–9.
Nardone, A., Ronchi, B., Lacetera, N., and Bernabucci, U. (2006). “Climatic effects on productive traits in livestock.” Veterinary Research Communications, 30, 75.
Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., and Bernabucci, U. (2010) “Effects of climate changes on animal production and sustainability of livestock systems.” Livestock science, 130(1–3), 57–69.
Negrón-Pérez, V. M., Fausnacht, D. W., and Rhoads, M. L. (2019). “Invited review: Management strategies capable of improving the reproductive performance of heat-stressed dairy cattle. Journal of Dairy Science, 102(12), 10695–10710.
Pierdominici, M., Vomero, M., Barbati, C., Colasanti, T., Maselli, A., and et al. (2012). “Role of autophagy in immunity and autoimmunity, with a special focus on systemic lupus erythematosus.” The FASEB Journal, 26(4), 1400-1412.
Rahman, M. B., Vandaele, L., Rijsselaere, T., Maes, D., Hoogewijs, M., and et al. (2011). “Scrotal insulation and its relationship to abnormal morphology, chromatin protamination and nuclear shape of spermatozoa in Holstein-Friesian and Belgian Blue bulls.” Theriogenology, 76(7), 1246–1257.
Rezagholivand, A., Nikkhah, A., Khabbazan, M.H., Mokhtarzadeh, S., Dehghan, M., and et al. (2021). “Feedlot performance, carcass characteristics and economic profits in four Holstein-beef crosses compared with pure-bred Holstein cattle.” Livestock Science, 1871-1413.
Rhoads, M.L. Kim, J.W. Collier, R.J. Crooker, B.A. Boisclair, Y.R. and et al.( 2010) “Effects of heat stress and nutrition on lactating Holstein cows: II. Aspects of hepatic growth hormone responsiveness. Journal of Dairy Science. 93, 170–179.
Sadeghi-Sefidmazgi, A., Moradi-Shahrbabak, M., Nejati-Javaremi, A., Miraei-Ashtiani, S. R., and Amer, P. R. (2012). “Breeding objectives for Holstein dairy cattle in Iran.” Journal of Dairy Science, 95(6), 3406–3418.
Skibiel, A. L., Peñagaricano, F., Amorín, R., Ahmed, B. M., Dahl, G. E., and et al. (2018). “In utero heat stress alters the offspring epigenome. Scientific Reports, 8:14609.
Skibiel, A. L., Peñagaricano, F., Amorín, R., Ahmed, B. M., Dahl, G. E., and et al. (2018). “In utero heat stress alters the offspring epigenome.” Scientific Reports, 8(1), 14609.
St-Pierre, N. Cobanov, B., and Schnitkey, G. (2003). “Economic losses from heat stress by US livestock industries.” Journal of Dairy Science. 86, E52–E77.
Tao, S., Bubolz, J. W., do Amaral, B. C., Thompson, I. M., Hayen, M. J., and et al. (2011). “Effect of heat stress during the dry period on mammary gland development.” Journal of Animal Science, 94(12), 5976–5986.
Tao, S., Orellana, R. M., Weng, X., Marins, T. N., Dahl, G. E., and et al. (2018). “Symposium review: The influences of heat stress on bovine mammary gland function.” Journal of Animal Science, 101(6), 5642–5654.
Tao, S., Thompson, I. M., Monteiro, A. P. A., Hayen, M. J., Young, L. J., and et al. (2012). “Effect of cooling heat-stressed dairy cows during the dry period on insulin response.” Journal of Dairy Science, 95(9), 5035-5046.
Thatcher, W. W., and Collier, R. J. (1986). “Effects of climate on bovine reproduction.” In: Current Therapy in Theriogenology 2. (D. A. Morrow, ed.), W. B. Saunders, Philadelphia. 301-309.
Vermunt, J. J., and Tranter, B. P. (2011). “Heat stress in dairy cattle–a review, and some of the potential risks associated with the nutritional management of this condition.” In Review of AVA QLD Division Conference 25-27/3/10 (pp. 212-221). Australian Veterinary Association.
Walters, A. H., Saacke, R. G., Pearson, R. E., and Gwazdauskas, F. C. (2006). “Assessment of pronuclear formation following in vitro fertilization with bovine spermatozoa obtained after thermal insulation of the testis.” Theriogenology, 65(6), 1016–1028.
West J. W. (1999). “Nutritional strategies for managing the heat-stressed dairy cow.” Journal of Animal Science, 77 Suppl 2, 21–35.
West, J. W. (2003) “Effects of heat-stress on production in dairy cattle.” Journal of Dairy Science. 86(6), 2131–44.
West, J. W. (2003). “Effects of heat-stress on production in dairy cattle.” Journal of Animal Science, 86(6), 2131–2144.
Yadav, B., Singh, G., Wankar, A., Dutta, N., Chaturvedi, V. B., and et al. (2016). “Effect of simulated heat stress on Digestibility, Methane Emission and metabolic adaptability in crossbred cattle.” Asian-Australas Journal of Animal Science. 29(11), 1585–92.
Ye, X., Zhou, X. J., and Zhang, H. (2018). “Exploring the role of autophagy-related gene 5 (ATG5) yields important insights into autophagy in autoimmune/autoinflammatory diseases.” Frontiers in Immunology, 9, 2334.
Zimbelman, R. B., Rhoads, R. P., Rhoads, M. L., Duff, G. C., Baumgard, L. H., and et al. (2009). “Are evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows.” In Proceedings of the Southwest Nutrition Conference. USDA Cooperative State Research, Education, and Extension Service (CSREES), 158-169.