مروری بر مایکوتوکسین‌ها در تغذیه طیور

نوع مقاله : مقاله علمی- ترویجی

نویسندگان

1 دکتری تخصصی علوم دامی، مدیر واحد تحقیق و توسعه، شرکت سپیدماکیان، رشت، گیلان، ایران

2 دانش آموخته کارشناسی ارشد تغذیه طیور، گروه مهندسی علوم دامی، دانشکده علوم دامی، دانشگاه گیلان، رشت، ایران

3 پژوهشگر واحد تحقیق و توسعه شرکت سپیدماکیان، رشت، گیلان، ایران

چکیده

اصطلاح مایکوتوکسین از "mykes" و "toxin" گرفته شده است که به ترتیب به معنی قارچ و سم است. مایکوتوکسین‌ها متابولیت‌های ثانویه با وزن مولکولی پایین هستند که توسط طیف وسیعی از قارچ‌ها، عمدتاً کپک‌ها تولید می‌شوند. بیش از 200 گونه کپک وجود دارد که مایکوتوکسین تولید می‌کنند. آفلاتوکسین‌ها (AF: Aflatoxin)، زئرالنون (ZEN: Zearalenone)، اکراتوکسین A (OTA: Ochratoxin A)، فومونیزین‌ها (FUM: Fumonisins)، تریکوتسن‌ها مانند دئوکسی نیوالنول (DON: Deoxy nivalenol) و سم T-2 برخی از مایکوتوکسین‌هایی هستند که می‌توانند به طور قابل توجهی بر سلامت و بهره‌وری گونه‌های طیور تأثیر بگذارند. رشد قارچ و متعاقب آن تشکیل مایکوتوکسین به عوامل مختلفی از جمله فصول، محل کشت غلات، خشکسالی و زمان برداشت بستگی دارد. تجزیه و تحلیل طولانی مدت نمونه‌های غلات و خوراک در سراسر جهان نشان داده است که ممکن است دانه‌هایی با غلظت بسیار بالای مایکوتوکسین‌ها وجود داشته باشد. مطالعات نشان داد که دانه‌های آلوده به مایکوتوکسین معمولاً حاوی بیش از یک نوع مایکوتوکسین هستند. مایکوتوکسین‌ها منجر به زیان اقتصادی قابل توجهی برای صنعت طیور می‌شوند که مرگ و میر طیور، کاهش وزن بدن، کاهش تعداد و کیفیت تخم‌مرغ، ضریب تبدیل غذایی بالاتر و سرکوب سیستم ایمنی از آن جمله هستند. سرکوب سیستم ایمنی منجر به افزایش حساسیت به عوامل عفونی و پاسخ ضعیف واکسن می‌شود. علاوه براین، باقی مانده‌های مایکوتوکسین در گوشت مرغ، تخم‌مرغ و محصولات مشتق شده از آن‌ها تهدیدی برای سلامت انسان است.

کلیدواژه‌ها


عنوان مقاله [English]

A review of mycotoxins in poultry nutrition

نویسندگان [English]

  • Keyvan Jelveh Ghaziani 1
  • Zahra Biabani Asli 2 3
1 Ph.D. in Animal Sciences, Director of Research and Development Unit, Sepidmakian Company, Rasht, Gilan, Iran
2 M.Sc. in Poultry Nutrition, Department of Animal Science, Department of Animal Science, University of Gilan, Rasht, Gilan, Iran
3 Researcher of Research and Development Unit, Sepidmakian Company, Rasht, Gilan, Iran
چکیده [English]

The term "mycotoxin" is derived from "mykes" and "toxin", which mean fungus and poison, respectively. Mycotoxins are low molecular weight secondary metabolites produced by a wide range of fungi, mainly molds. There are more than 200 species of molds that produce mycotoxins. Aflatoxins (AF), zearalenone (ZEN), ochratoxin A (OTA), fumonisins (FUM), trichothecenes such as deoxynivalenol (DON) and T-2 toxin are some of the mycotoxins that can significantly affect health. And affect the productivity of poultry species. The growth of fungus and the subsequent formation of mycotoxins depends on various factors such as seasons, place of grain cultivation, drought and harvest time. Long-term analysis of grain and feed samples worldwide has shown that there may be grains with very high concentrations of mycotoxins, although overall mycotoxin contamination is low. These data also showed that mycotoxin-contaminated seeds usually contained more than one mycotoxin. Mycotoxins cause substantial financial setbacks for the poultry sector, resulting in poultry deaths, decreased body weight, fewer and lower-quality eggs, higher food conversion ratio, and weakened immune system. Suppressed immune systems make birds more susceptible to infections and reduce the effectiveness of vaccines. Furthermore, mycotoxin remnants in chicken products, eggs, and their by-products pose a risk to human health.

کلیدواژه‌ها [English]

  • Fungus
  • Mycotoxicosis
  • Mycotoxin
  • Poison
  • Poultry
Abid-Essefi, S., Baudrimont, I., Hassen, W., Ouanes, Z., Mobio, T. A and et al (2003). “DNA fragmentation, apoptosis and cell cycle arrest induced by zearalenone in cultured DOK, Vero and Caco-2 cells: prevention by Vitamin E.” Toxicology, 192(2-3), 237-248.
Allen, N. K., Mirocha, C. J., Weaver, G., Aakhus-Allen, S. A. N. D. R. A., and Bates, F. (1981). “Effects of dietary zearalenone on finishing broiler chickens and young turkey poults.” Poultry science60(1), 124-131.
Andretta, I., Kipper, M., Lehnen, C. R., Hauschild, L., Vale, M. M., and et al. (2011). “Meta-analytical study of productive and nutritional interactions of mycotoxins in broilers.” Poultry Science90(9), 1934-1940.
Antonissen, G., Van Immerseel F., and Croubels S. (2018). “Toward an integrative understandingof the impact of mycotoxins on gut health. World Nutrition Forum.” October 3rd, 2018. Cape Town, South Africa.  
Antonissen, G., Croubels, S., Pasmans, F., Ducatelle, R., Haesebrouck, F., and et al (2012). “The mycotoxin deoxynivalenol predisposes for the development of necrotic enteritis in broilers.” In1st ihsig international symposium (IHSIG 2012): Intestinal health management in tomorrow's poultry industry. Intestinal Health Scientific Interest Group (ihsig).
Antonissen, G., Van Immerseel, F., Pasmans, F., Ducatelle, R., Haesebrouck, F.,  and et al. (2014). “The mycotoxin deoxynivalenol predisposes for the development of Clostridium perfringens-induced necrotic enteritis in broiler chickens.” PLoS One, 9(9), e108775.
Antonissen, G., Van Immerseel, F., Pasmans, F., Ducatelle, R., Janssens, G. P., De Baere, S., ... & Croubels, S. (2015). “Mycotoxins deoxynivalenol and fumonisins alter the extrinsic component of intestinal barrier in broiler chickens.” Journal of agricultural and food chemistry63(50), 10846-10855.
Arunachalam, C., and Doohan, F. M. (2013). “Trichothecene toxicity in eukaryotes: Cellular and molecular mechanisms in plants and animals.” Toxicology letters217(2), 149-158.
Chen, P., Xiang, B., Shi, H., Yu, P., Song, Y., & Li, S. (2020). “Recent advances on type A trichothecenes in food and feed: Analysis, prevalence, toxicity, and decontamination techniques.” Food Control118, 107371.
Chen, Y., Cheng, Y., Wen, C., Wang, W., Kang, Y., Wang, A., & Zhou, Y. (2019). “The protective effects of modified palygorskite on the broilers fed a purified zearalenone-contaminated diet.” Poultry science98(9), 3802-3810.
Chi, M. S., Mirocha, C. J., Weaver, G. A., and Kurtz, H. J. (1980). “Effect of zearalenone on female white leghorn chickens.” Applied and Environmental Microbiology39(5), 1026-1030.
Cope, R. B. (2018). “Trichothecenes.” In Veterinary toxicology (pp. 1043-1053). Academic Press. 1043–1053.
D’mello, J. P. F., Placinta, C. M., and Macdonald, A. M. C. (1999). “Fusarium mycotoxins: a review of global implications for animal health, welfare and productivity.” Animal feed science and technology80(3-4), 183-205.
Devegowda, G., and Murthy, T. N. K. (2005). “Mycotoxins: Their effects in poultry and some practical solutions.”25-56.
Devreese, M., Antonissen, G., Broekaert, N., De Baere, S., Vanhaecke, L., De Backer, P., & Croubels, S. (2015). “Comparative toxicokinetics, absolute oral bioavailability, and biotransformation of zearalenone in different poultry species.” Journal of agricultural and food chemistry63(20), 5092-5098.
Gajęcka, M., Waśkiewicz, A., Zielonka, Ł., Goliński, P., Rykaczewska, A., Lisieska-Żołnierczyk, S., & Gajęcki, M. T. (2018). “Mycotoxin levels in the digestive tissues of immature gilts exposed to zearalenone and deoxynivalenol.” Toxicon153, 1-11.
Gajecki, M. (2002). “Zearalenone--undesirable substances in feed.” Polish journal of veterinary sciences5(2), 117-122.
Gibson, R. M., Bailey, C. A., Kubena, L. F., Huff, W. E., & Harvey, R. B. (1989). “Ochratoxin A and Dietary Protein.: 1. Effects on Body Weight, Feed Conversion, Relative Organ Weight, and Mortality in Three-Week-Old Broilers.” Poultry science68(12), 1658-1663.
Gimeno, A., & Martins, M. L. (2011). “Micotoxinas y micotoxicosis en animales y humanos.” Special Nutrients, Florida, 50-53.
Glahn, R. P., Wideman Jr, R. F., Evangelisti, J. W., & Huff, W. E. (1988). “Effects of ochratoxin A alone and in combination with citrinin on kidney function of single comb white leghorn pullets.” Poultry Science67(7), 1034-1042.
Gratz, S. W., Dinesh, R., Yoshinari, T., Holtrop, G., Richardson, A. J., Duncan, G., ... & Tarbin, J. (2017). “Masked trichothecene and zearalenone mycotoxins withstand digestion and absorption in the upper GI tract but are efficiently hydrolyzed by human gut microbiota in vitro.” Molecular nutrition & food research61(4), 1600680.
Grenier, B., Dohnal, I., Shanmugasundaram, R., Eicher, S. D., Selvaraj, R. K., Schatzmayr, G., & Applegate, T. J. (2016). “Susceptibility of broiler chickens to coccidiosis when fed subclinical doses of deoxynivalenol and fumonisins—special emphasis on the immunological response and the mycotoxin interaction.” Toxins8(8), 231.
Grešáková, Ľ., Bořutová, R., Faix, Š., Plachá, I., Čobanová, K., Košíková, B., & Leng, Ľ. (2012). “Effect of lignin on oxidative stress in chickens fed a diet contaminated with zearalenone.” Acta Veterinaria Hungarica60(1), 103-114.
Groopman, J. D., Fowler, K. W., Busby Jr, W. F., & Wogan, G. N. (1981). “Interaction of aflatoxin B 2 with rat liver DNA and histones in vivo.” Carcinogenesis2(12), 1371-1373.
Hanif, N. Q., & Muhammad, G. (2015). “Immunotoxicity of ochratoxin A and role of Trichosporon mycotoxinivorans on the humoral response to infectious viral disease vaccines in broilers.” Pakistan Journal of Zoology47(6).
Huff, W. E., & Doerr, J. A. (1981). “Synergism between aflatoxin and ochratoxin A in broiler chickens.” Poultry Science60(3), 550-555.
Huff, W. E., & Hamilton, P. B. (1975). “The interaction of ochratoxin A with some environmental extremes.” Poultry Science54(5), 1659-1662.
Huff, W. E., Kubena, L. F., & Harvey, R. B. (1988). “Progression of ochratoxicosis in broiler chickens.” Poultry science67(8), 1139-1146.
Jiang, S. Z., Yang, Z. B., Yang, W. R., Gao, J., Liu, F. X., Broomhead, J., & Chi, F. (2011). “Effects of purified zearalenone on growth performance, organ size, serum metabolites, and oxidative stress in postweaning gilts.” Journal of animal science89(10), 3008-3015.
Jiang, S. Z., Yang, Z. B., Yang, W. R., Wang, S. J., Wang, Y., Broomhead, J., ... & Chi, F. (2012). “Effect on hepatonephric organs, serum metabolites and oxidative stress in post‐weaning piglets fed purified zearalenone‐contaminated diets with or without Calibrin‐Z.” Journal of animal physiology and animal nutrition96(6), 1147-1156.
Kamalavenkatesh, P., Vairamuthu, S., Balachandran, C., Manohar, B. M., & Raj, G. D. (2005). “Immunopathological effect of the mycotoxins cyclopiazonic acid and T-2 toxin on broiler chicken.” Mycopathologia159, 273-279.
Kolawole, O., Graham, A., Donaldson, C., Owens, B., Abia, W. A., Meneely, J., ... & Elliott, C. T. (2020). “Low doses of mycotoxin mixtures below EU regulatory limits can negatively affect the performance of broiler chickens: A longitudinal study.” Toxins12(7), 433.
Liu, J., & Applegate, T. (2020). “Zearalenone (ZEN) in livestock and poultry: dose, toxicokinetics, toxicity and estrogenicity.” Toxins12(6), 377.
Lopez, G., & Leeson, S. (1995). “Response of broiler breeders to low-protein diets.: 1. Adult breeder performance.” Poultry Science74(4), 685-695.
Magnoli, A. P., Monge, M. P., Miazzo, R. D., Cavaglieri, L. R., Magnoli, C. E., Merkis, C. I., ... & Chiacchiera, S. M. (2011). “Effect of low levels of aflatoxin B1 on performance, biochemical parameters, and aflatoxin B1 in broiler liver tissues in the presence of monensin and sodium bentonite.” Poultry science90(1), 48-58.
Malachová, A., Sulyok, M., Beltrán, E., Berthiller, F., & Krska, R. (2014). “Optimization and validation of a quantitative liquid chromatography–tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices.” Journal of Chromatography A1362, 145-156.
Male, D., Wu, W., Mitchell, N. J., Bursian, S., Pestka, J. J., & Wu, F. (2016). “Modeling the emetic potencies of food-borne trichothecenes by benchmark dose methodology.” Food and Chemical Toxicology94, 178-185.
Malekinejad, H., Maas-Bakker, R., & Fink-Gremmels, J. (2006). “Species differences in the hepatic biotransformation of zearalenone”. The Veterinary Journal172(1), 96-102.
Marquardt, R. R., & Frohlich, A. A. (1992). “A review of recent advances in understanding ochratoxicosis.” Journal of animal science70(12), 3968-3988.
Milićević, D. R., Škrinjar, M., & Baltić, T. (2010). “Real and perceived risks for mycotoxin contamination in foods and feeds: challenges for food safety control.” Toxins2(4), 572-592.
Nayakwadi, S., Ramu, R., Kumar Sharma, A., Kumar Gupta, V., Rajukumar, K., Kumar, V., ... & Basalingappa, K. M. (2020). “Toxicopathological studies on the effects of T-2 mycotoxin and their interaction in juvenile goats.” PloS one15(3), e0229463.
Nielsen, C., Casteel, M., Didier, A., Dietrich, R., & Märtlbauer, E. (2009). “Trichothecene-induced cytotoxicity on human cell lines.” Mycotoxin Research25, 77-84.
Pascari, X., Maul, R., Kemmlein, S., Marin, S., & Sanchis, V. (2020). “The fate of several trichothecenes and zearalenone during roasting and enzymatic treatment of cereal flour applied in cereal-based infant food production.” Food Control114, 107245.
Pinton, P., & Oswald, I. P. (2014). “Effect of deoxynivalenol and other Type B trichothecenes on the intestine: a review.” Toxins6(5), 1615-1643.
Polak-Śliwińska, M., & Paszczyk, B. (2021). “Trichothecenes in food and feed, relevance to human and animal health and methods of detection: A systematic review.” Molecules26(2), 454.
Raju, M. V. L. N., & Devegowda, G. (2000). “Influence of esterified-glucomannan on performance and organ morphology, serum biochemistry and haematology in broilers exposed to individual and combined mycotoxicosis (aflatoxin, ochratoxin and T-2 toxin).” British poultry science41(5), 640-650.
Rogowska, A., Pomastowski, P., Sagandykova, G., & Buszewski, B. (2019). “Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods.” Toxicon162, 46-56.
Schiefer, H. B. (1990). “Mycotoxicoses of domestic animals and their diagnosis.” Canadian journal of physiology and pharmacology68(7), 987-990.
Schumacher, J. C. (1997). “Appendix 2: the estimation of ferric iron in electron microprobe analysis of amphiboles.” Mineralogical Magazine61(405), 312-321.
Singh, H., Singh, S., Bhardwaj, S. K., Kaur, G., Khatri, M., Deep, A., & Bhardwaj, N. (2022). Development of carbon quantum dot-based lateral flow immunoassay for sensitive detection of aflatoxin M1 in milk. Food Chemistry393, 133374.
Verbrugghe, E., Vandenbroucke, V., Dhaenens, M., Shearer, N., Goossens, J., De Saeger, S., ... & Pasmans, F. (2012). “T-2 toxin induced Salmonella Typhimurium intoxication results in decreased Salmonella numbers in the cecum contents of pigs, despite marked effects on Salmonella-host cell interactions.” Veterinary Research43, 1-18.
Yang, J., Zhang, Y., Wang, Y., & Cui, S. (2007). “Toxic effects of zearalenone and α-zearalenol on the regulation of steroidogenesis and testosterone production in mouse Leydig cells.” Toxicology in vitro21(4), 558-565.
Yang, S., Zhang, H., Sun, F., De Ruyck, K., Zhang, J., Jin, Y., ... & De Boevre, M. (2017). “Metabolic profile of zearalenone in liver microsomes from different species and it’s in vivo metabolism in rats and chickens using ultra high-pressure liquid chromatography-quadrupole/time-of-flight mass spectrometry.” Journal of agricultural and food chemistry65(51), 11292-11303.
Yarru, L. P. (2008). “Effects of aflatoxin on hepatic gene expression in a poultry model.” University of Missouri-Columbia.
Yarru, L. P., Settivari, R. S., Antoniou, E., Ledoux, D. R., & Rottinghaus, G. E. (2009). “Toxicological and gene expression analysis of the impact of aflatoxin B1 on hepatic function of male broiler chicks.” Poultry Science88(2), 360-371.
Yunus, A. W., Blajet-Kosicka, A., Kosicki, R., Khan, M. Z., Rehman, H., & Böhm, J. (2012). “Deoxynivalenol as a contaminant of broiler feed: Intestinal development, absorptive functionality, and metabolism of the mycotoxin.” Poultry science91(4), 852-861.
Zhang, G. L., Feng, Y. L., Song, J. L., & Zhou, X. S. (2018). “Zearalenone: a mycotoxin with different toxic effect in domestic and laboratory animals’ granulosa cells.” Frontiers in genetics9, 667.
Zinedine, A., Soriano, J. M., Moltó, J. C., & Manes, J. (2007). “Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin.” Food and chemical toxicology45(1), 1-18.