Nutritional, microbiological, and environmental aspects of methane production in ruminants

Document Type : Scientific-Extensional Article

Authors

1 Ph.D. student, Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran

2 M.Sc. Student, Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran

Abstract

Methane resulting from the fermentation of food in the rumen is a greenhouse gas that includes about 37% of the methane produced in nature and can play a destructive role in the environment. Methane is the most abundant organic gas in the atmosphere, and its excessive release has a significant effect on increasing the temperature of the earth. If the fermentation conditions in the rumen are such that it leads to excess methane production, this gas can reduce raw energy efficiency for livestock by 7-10%, so it is necessary to prevent methane production in order to improve feeding efficiency and preserve the environment. Factors such as the type of carbohydrates in the diet, the feeding level, the rate of food passage, the presence of ionophores or lipids in the diet, and the ambient temperature affect methane emissions from ruminants. Developing strategies to reduce methane production without adversely affecting ruminant production remains a major challenge for nutritionists and microbiologists. Reduction of carbon dioxide (CO2) to acetate and direct genetic manipulation of methanogenic bacteria (methane producer) are solutions that may further reduce energy waste through methane excretion in ruminants.

Keywords


عموزاده آرائی، ک.، قورچی، ت.، توغدری، ع.، اسدی، م.، و مهرانی، ک. (1402). "اثر سطوح مختلف گیاه اوجی بر عملکرد، قابلیت هضم مواد مغذی، رفتار نشخوار، فراسنجه‌های خونی و شکمبه‌ای میش‌های دالاق." تولیدات دامی، 25(1)، 71-81.
Aboagye, I.A., and Beauchemin, K.A. (2019). “Potential of Molecular Weight and Structure of Tannins to Reduce Methane Emissions from Ruminants: A Review”. Animals, 9, 856.
Arndt, C., Hristov, A. N., Price, W. J., McClelland, S. C., Pelaez, A. M., and et al. (2022). “Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5°C target by but not 2050.” Proceedings of the National Academy of Sciences, USA 119: e2111294119.
Baca-González, V., Asensio-Calavia, P., González-Acosta, S., Pérez de la Lastra, J.M., and Morales de la Nuez, A. (2020). “Are Vaccines the Solution for Methane Emissions from Ruminants?” Vaccines, 8, 460.
Beauchemin, K. A., Ungerfeld, E. M., Eckard, R. J. and Wang, M. (2020). “Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation.” Animal, 14, s2–s16.
Benchaar, C., and Greathead, H. (2011). ”Essential oils and opportunities to mitigate enteric methane emissions from ruminants.” Animal Feed Science and Technology, 166, 338-355. ‏
Clark, H. (2009). “Methane emissions from ruminant livestock; are they important and can we reduce them?” In Proceedings of the New Zealand Grassland Association, 73-76. ‏
Clark, H., Kelliher, F., and Pinares-Patino, C. (2010). “Reducing CH4 emissions from grazing ruminants in New Zealand: challenges and opportunities.” Asian-Australasian Journal of Animal Sciences, 24(2), 295-302. ‏
Cook, S. R., Maiti, P. K., Chaves, A. V., Benchaar, C., Beauchemin, K. A., and et al. (2008). “Avian (IgY) anti-methanogen antibodies for reducing ruminal methane production: in vitro assessment of their effects.” Australian Journal of Experimental Agriculture, 48(2), 260-264. ‏
Dämmgen, U., Rösemann, C., Haenel, H. D., and Hutchings, N. J. (2012). “Enteric methane emissions from German dairy cows.” Landbauforsch, 62(1/2), 21-31. ‏
Duin, E. C., Wagner, T., Shima S., Prakash, D., B. Cronin, D. and et al. (2016). “Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol.” Proceedings of the National Academy of Sciences, 113, 6172-6177. ”
Duval, S., and Kindermann, M. (2012). “Use of nitrooxy organic molecules in feed for reducing enteric methane production in ruminants, and/or to improve ruminant performance.” International Patent, 7, 2022.
Field, J. A., Kortekaas, S., and Lettinga, G. (1989). “The tannin theory of methanogenic toxicity.” Biological Wastes, 29(4), 241-262. ‏
Ghanbari Maman, L., Palizban, F., Fallah Atanaki, F., Elmi Ghiasi, N., Ariaeenejad, S., and et al. (2020). “Co-abundance analysis reveals hidden players associated with high methane yield phenotype in sheep rumen microbiome.” Scientific Reports, 10(1), 4995. ‏
Guerci, M., Bava, L., Zucali, M., Sandrucci, A., Penati, C., and et al. (2013). “Effect of farming strategies on environmental impact of intensive dairy farms in Italy.” Journal of Dairy Research, 80(3), 300-308. ‏
Hook, S. E., Wright, A. D. G., and McBride, B. W. (2010). “Methanogens: methane producers of the rumen and mitigation strategies.” Archaea, 2010. ‏
Iqbal, M. F., Cheng, Y. F., Zhu, W. Y., and Zeshan, B. (2008). “Mitigation of ruminant methane production: current strategies, constraints and future options.” World Journal of Microbiology and Biotechnology, 24, 2747-2755. ‏
Khanbabaee, K., and Van Ree, T. (2001). “Tannins: classification and definition.” Natural Product Reports, 18(6), 641-649. ‏
Kirchgessner, M., Windisch, W., Müller, H. L., and Kreuzer, M. (1991). “Release of methane and of carbon dioxide by dairy cattle.” Agribiological Research; (Germany), 44(2/3).‏
Lee, S. Y., Yang, S. H., Lee, W. S., Kim, H. S., Shin, D. E., and et al. (2009). “Effect of 2-bromoethanesulfonic acid on in vitro fermentation characteristics and methanogen population.” Asian-Australasian Journal of Animal Sciences, 22(1), 42-48. ‏
Maigaard, M., Weisbjerg, M., Johansen, M., Walker, N., Ohlsson, C. and et al. (2023). “Effects of dietary fat, nitrate, and 3-NOP and their combinations on methane emission, feed intake and milk production in dairy cows.” Journal of Dairy Science, 0022-0302(23)00625-2.
Martin, C., Morgavi, D. P., and Doreau, M. (2010). “Methane mitigation in ruminants: from microbe to the farm scale.” Animal, 4(3), 351-365. ‏
Martin, C., Rouel, J., Jouany, J. P., Doreau, M., and Chilliard, Y. (2008). “Methane output and diet digestibility in response to feeding dairy cow’s crude linseed, extruded linseed, or linseed oil.” Journal of Animal Science, 86(10), 2642-2650. ‏
McAllister, T. A., and Newbold, C. J. (2008). “Redirecting rumen fermentation to reduce methanogenesis.” Australian Journal of Experimental Agriculture, 48(2), 7-13. ‏
McAllister, T. A., Cheng, K. J., Okine, E. K., and Mathison, G. W. (1996). “Dietary, environmental and microbiological aspects of methane production in ruminants.” Canadian Journal of Animal Science, 76(2), 231-243. ‏
McSweeney, C. S., Palmer, B., McNeill, D. M., and Krause, D. O. (2001). “Microbial interactions with tannins: nutritional consequences for ruminants.” Animal Feed Science and Technology, 91(1-2), 83-93. ‏
Meale, S. J., Chaves, A. V., McAllister, T. A., Iwaasa, A. D., Yang, W. Z., and. (2014). “Including essential oils in lactating dairy cow diets: Effects on methane emissions1.” Animal Production Science, 54(9), 1215-1218. ‏
Moate, P. J., Williams, S. R. O., Grainger, C., Hannah, M. C., Ponnampalam, E. N., and et al. (2011). “Influence of cold-pressed canola, brewer's grains and hominy meal as dietary supplements suitable for reducing enteric methane emissions from lactating dairy cows.” Animal Feed Science and Technology, 166, 254-264. ‏
Morvan, B., Bonnemoy, F., Fonty, G., and Gouet, P. (1996). “Quantitative determination of H 2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals.” Current Microbiology, 32, 129-133. ‏
Newbold, C. J., De La Fuente, G., Belanche, A., Ramos-Morales, E., and McEwan, N. R. (2015). “The role of ciliate protozoa in the rumen.” Frontiers in Microbiology, 6, 1313. ‏
Newbold, C. J., McIntosh, F. M., Williams, P., Losa, R., and Wallace, R. J. (2004). “Effects of a specific blend of essential oil compounds on rumen fermentation.” Animal Feed Science and Technology, 114(1-4), 105-112. ‏
Patel, S., Shukla, R., and Goyal, A. (2015). “Probiotics in valorization of innate immunity across various animal models.” Journal of Functional Foods, 14, 549-561. ‏
Patra, A. K. (2014). “A meta-analysis of the effect of dietary fat on enteric methane production, digestibility and rumen fermentation in sheep, and a comparison of these responses between cattle and sheep.” Livestock Science, 162, 97-103. ‏
Russell, J. B., and Houlihan, A. J. (2003). “Ionophore resistance of ruminal bacteria and its potential impact on human health.” FEMS Microbiology Reviews, 27(1), 65-74. ‏
Schofield, P., Mbugua, D. M., and Pell, A. N. (2001). “Analysis of condensed tannins: a review.” Animal Feed Science and Technology, 91(1-2), 21-40. ‏
Sejian, V., and Naqvi, S. M. K. (2012). “Livestock and climate change: mitigation strategies to reduce methane production.” Greenhouse Gases-Capturing, Utilization and Reduction, 255-276. ‏
Sejian, V., and Naqvi, S. M. K. (2012). “Livestock and climate change: mitigation strategies to reduce methane production.” Greenhouse Gases-Capturing, Utilization and Reduction, 255-276. ‏
Subharat, S., Shu, D., Zheng, T., Buddle, B.M., Kaneko, K., and et al. (2016). “Vaccination of Sheep with a Methanogen Protein Provides Insight into Levels of Antibody in Saliva Needed to Target Ruminal Methanogens.” PLoS One, 11(7): e0159861.
Tavendale, M. H., Meagher, L. P., Pacheco, D., Walker, N., Attwood, G. T., and et al. (2005). “Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis.” Animal Feed Science and Technology, 123, 403-419. ‏
Teferedegne, B., McIntosh, F., Osuji, P. O., Odenyo, A., Wallace, R. J., and et al. (1999). “Influence of foliage from different accessions of the sub-tropical leguminous tree, Sesbania sesban, on ruminal protozoa in Ethiopian and Scottish sheep.” Animal Feed Science and Technology, 78(1-2), 11-20. ‏
Van Middelaar, C. E., Berentsen, P. B. M., Dijkstra, J., and De Boer, I. J. M. (2013). “Evaluation of a feeding strategy to reduce greenhouse gas emissions from dairy farming: The level of analysis matters.” Agricultural Systems, 121, 9-22. ‏
Vincken, J. P., Heng, L., de Groot, A., and Gruppen, H. (2007). “Saponins, classification and occurrence in the plant kingdom." Phytochemistry, 68(3), 275-297. ‏
Yu, G., Beauchemin, K. A., and Dong, R (2021).  “A review of 3-nitrooxypropanol for enteric methane mitigation from ruminant livestock.” Animals (Basel), 11, 3540.
Wedlock, D.N., Pedersen, G., Denis, M., Dey, D., Janssen, P.H., and et al. (2010). “Development of a vaccine to mitigate greenhouse gas emissions in agriculture: Vaccination of sheep with methanogen fractions induces antibodies that block methane production in vitro.” New Zealand Veterinary Journal, 58(1), 29-36.