The role of choline in ruminant nutrition

Document Type : Scientific-Extensional Article

Authors

1 M.Sc. Student, Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran

2 Professor, Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran

Abstract

Unlike other B vitamins, choline is not a metabolic catalyst and is considered an essential building block in body tissues. Also, choline is a part of lecithins, which play a vital role in cell structure and activity. Choline plays an important role in fat metabolism in the liver as it converts excess fat in the liver to lecithin or increases the consumption of fatty acids and therefore prevents the accumulation of fat in the liver. Choline is part of acetylcholine, which is responsible for the transmission of nerve messages. Finally, this vitamin acts as a donor of methyl groups in transmethylation reactions with the involvement of folic acid or vitamin B12, although other compounds such as methionine and betaine can also act as donors of methyl groups. They are not able to replace choline in its other functions. Considering that choline can be made from methionine in the liver; therefore the animal's choline requirement is affected by the level of methionine in the diet.

Keywords


Akers, R. M. (2006). “Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows “Journal of Dairy Science89(4), 1222-1234.‏
Andersson, A. K., Flodström, M., and Sandler, S. (2001). “Cytokine-induced inhibition of insulin release from mouse pancreatic β-cells deficient in inducible nitric oxide synthase. “Biochemical and Biophysical Research Communications281(2), 396-403.‏
Ardalan, M., Dehghan-Banadaky, M., Rezayazdi, K., and Hossein-Zadeh, N. G. (2011). “The effect of rumen-protected methionine and choline on plasma metabolites of Holstein dairy cows.” The Journal of Agricultural Science149(5), 639-646.‏
Baker, D. H. (1995). “Vitamin bioavailability”. In Bioavailability of Nutrients for Animals: Amino Acids, Minerals, and Vitamins, 399–431 [CB Ammerman, DH Baker and AJ Lewis, editors]. London, UK: Academic Press.
Baldi, A., and Pinotti, L. (2006). “Choline metabolism in high-producing dairy cows: Metabolic and nutritional basis.” Canadian Journal of Animal Science86(2), 207-212.‏
Boisclair, Y. R., Wesolowski, S. R., Kim, J. W., and Ehrhardt, R. A. (2006). “Roles of growth hormone and leptin in the periparturient dairy cow.” Ruminant physiology: digestion, metabolism and impact of nutrition on gene expression, immunology and stress, 327-346.‏
Brann, D. W., Wade, M. F., Dhandapani, K. M., Mahesh, V. B., and Buchanan, C. D. (2002). “Leptin and reproduction.” Steroids, 67(2), 95-104.‏
Clempson, A. M., Pollott, G. E., Brickell, J. S., Bourne, N. E., Munce, N., and Wathes, D. C. (2011). “Evidence that leptin genotype is associated with fertility, growth, and milk production in Holstein cows.” Journal of Dairy Science94(7), 3618-3628.‏
Cooke, R. F., Del Rio, N. S., Caraviello, D. Z., Bertics, S. J., Ramos, M. H., and Grummer, R. R. (2007). “Supplemental choline for prevention and alleviation of fatty liver in dairy cattle.” Journal of dairy science90(5), 2413-2418.‏
Cuccurullo, V., Di Stasio, G. D., Evangelista, L., Castoria, G., and Mansi, L. (2017). “Biochemical and pathophysiological premises to positron emission tomography with choline radiotracers.” Journal of Cellular Physiology232(2), 270-275.‏
Dänicke, S. V., Ueberschär, K. H., Reese, K. R., and Weigend, S. T. (2006). “Investigations on the effects of rape oil quality, choline and methionine concentration in diets for laying hens on the trimethylamine content of the eggs, on trimethylamine metabolism and on laying performance.” Archives of Animal Nutrition, 60(1), 57-79.‏
De Veth, M. J., Artegoitia, V. M., Campagna, S. R., Lapierre, H., Harte, F., and Girard, C. L. (2016). “Choline absorption and evaluation of bioavailability markers when supplementing choline to lactating dairy cows.” Journal of Dairy Science, 99(12), 9732-9744.‏
Esposito, G., Irons, P. C., Webb, E. C., and Chapwanya, A. (2014). “Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows.” Animal Reproduction Science144(3-4), 60-71.‏
Furken, C., and Hoedemaker, M. (2014). “Einfluss einer Fütterung von pansengeschütztem Cholin in der Transitphase bei Milchkühen.” Tierärztliche Praxis Ausgabe G: Großtiere/Nutztiere, 42(01), 11-21.‏
Gibellini, F., and Smith, T. K. (2010). “The Kennedy pathway—de novo synthesis of phosphatidylethanolamine and phosphatidylcholine.” IUBMB Life, 62(6), 414-428.‏
Grummer, R. R. (2008). “Nutritional and management strategies for the prevention of fatty liver in dairy cattle.” The Veterinary Journal, 176(1), 10-20.‏
Grummer, R., (2012). “Choline: a limiting nutrient for transition dairy cows.” In Proceedings of the Cornell Nutrition Conference, 21–28
Guretzky, N. J., Carlson, D. B., Garrett, J. E., and Drackley, J. K. (2006). “Lipid metabolite profiles and milk production for Holstein and Jersey cows fed rumen-protected choline during the periparturient period.” Journal of Dairy Science, 89(1), 188-200.‏
Hassan, R. A., Attia, Y. A., and EI-Ganzory, E. H. (2005). “Growth, carcass quality and serum constituents of slow growing chicks as affected by betain addition to diet containing different level of choline.” International Journal of Poultry Science. 4, 840-850.
Hayirli, A., Grummer, R. R., Nordheim, E. V., and Crump, P. M. (2002). “Animal and dietary factors affecting feed intake during the prefresh transition period in Holsteins.” Journal of Dairy Science, 85(12), 3430-3443.‏
Henning, S. M., Swendseid, M. E., Ivandic, B. T., and Liao, F. (1997). “Vitamins C, E, A and heme oxygenase in rats fed methyl/folate-deficient diets.” Free Radical Biology and Medicine, 23(6), 936-942.‏
Humblot, P., Freret, S., and Ponsart, C. (2009). “Epidemiology of Embryonic Mortality in Cattle; practical implications for AI and Embryo production.” In Proceedings of Canadian Embryo Transfer Association and American Embryo Transfer Association Joint Convention, Montréal, Canada, 17-32.‏
Huopalahti, R., Anton, M., López-Fandiño, R., and Schade, R. (2007). “Bioactive egg compounds” Berlin: Springer. 5. 293-389.
Janovick, N. A., and Drackley, J. K. (2010). “Prepartum dietary management of energy intake affects postpartum intake and lactation performance by primiparous and multiparous Holstein cows.” Journal of Dairy Science, 93(7), 3086-3102.‏
Leiva, T., Cooke, R. F., Brandao, A. P., Marques, R. S., and Vasconcelos, J. L. M. (2015). “Effects of rumen-protected choline supplementation on metabolic and performance responses of transition dairy cows.” Journal of Animal Science, 93(4), 1896-1904.‏
Lima, F. S., MF Filho, S., Greco, L. F., Susca, F., Magalhaes, V. J. A., Garrett, J., and Santos, J. E. P. (2007). “Effects of feeding rumen-protected choline (RPC) on lactation and metabolism.” In Journal of Dairy Science, 90, 174-174.
Lima, F. S., Sá Filho, M. F., Greco, L. F., and Santos, J. E. P. (2012). “Effects of feeding rumen-protected choline on incidence of diseases and reproduction of dairy cows.” The Veterinary Journal, 193(1), 140-145.‏
Lomander, H. (2012). “Energy status related to production and reproduction in dairy cows”. 73.‏
Lucy, M. C. (2000). “Regulation of ovarian follicular growth by somatotropin and insulin-like growth factors in cattle.” Journal of Dairy Science, 83(7), 1635-1647.‏
Mato, J. M., Alvarez, L., Corrales, F. J., and Pajares, M. A. (1994). “S-adenosylmethionine and the liver.” In The Liver: Biology and Pathobiology, 461–470.
Mohsen, M. K., Gaafar, H. M. A., Khalafalla, M. M., Shitta, A. A., and Yousif, A. M. (2011). “Effect of rumen protected choline supplementation on digestibility, rumen activity and milk yield in lactating Friesian cows.” Slovak Journal of Animal Science, 44(1), 13-20.‏
Nardi, R. D., Marchesini, G., Tenti, S., Contiero, B., Andrighetto, I., and Segato, S. (2012). “Lecithin as a supplement for mid-lactating dairy cows.” Acta Agriculturae Slovenica, 100(Suppl. 3), 67-70.‏
National Research Council. (2001). “Nutrient requirements of dairy cattle.” National Research Council519.‏
National Research Council. (2007) “Nutrient Requirements of Small Ruminants:” Sheep, Goats, Cervide and New York Camelids. National Academy of Science, Washington, DC.
Oelrichs, W., Lucy, M., and Kerley, M. (2004) “Feeding soybeans and rumen-protected choline to dairy cows during the periparturient period and early lactation. 2. Effects on reproduction.” Journal of Dairy Science, 87(1), 344–349.
Pawar, S. P., Kewalramani, N., Thakur, S. S., and Kaur, J. (2015). “Effect of dietary rumen protected choline supplementation on milk choline content in crossbred cows.” Indian Journal of Animal Nutrition32(1), 30-35.‏
Piepenbrink, M. S., and Overton, T. R. (2003). “Liver metabolism and production of cows fed increasing amounts of rumen-protected choline during the periparturient period.” Journal of Dairy Science86(5), 1722-1733.‏
Pinotti, L., Campagnoli, A., Dell'Orto, V., and Baldi, A. (2005). “Choline: Is there a need in the lactating dairy cow?.” Livestock Production Science98(1-2), 149-152.‏
Pinotti, L., Manoni, M., Fumagalli, F., Rovere, N., Tretola, M., and Baldi, A. (2020). “The role of micronutrients in high-yielding dairy ruminants: Choline and vitamin E.” Ankara Üniversitesi Veteriner Fakültesi Dergisi67(2), 209-214.‏
Radcliff, R. P., McCormack, B. L., Crooker, B. A., and Lucy, M. C. (2003). “Plasma hormones and expression of growth hormone receptor and insulin-like growth factor-I mRNA in hepatic tissue of periparturient dairy cows.” Journal of Dairy Science86(12), 3920-3926.‏
Ruiz, N., Miles, R. D., and Harms, R. H. (1983). “Choline, methionine and sulphate interrelationships in poultry nutrition – A review.” World’s Poultry Science Journal, 39, 185–198.
Santos, J. E. P., and Lima, F. S. (2007). “Feeding rumen-protected choline to transition dairy cows.” In Proceedings of the 20th Annual Florida Ruminant Nutrition Symposium, 149–159.
Shahsavari, A. (2012). “The metabolic and reproductive responses of lactating dairy cows to supplementation with choline.”‏
Sheikh, F. A., Kewalramani, N., and Thakur, S. S. (2015). “Effect of supplementation of rumen protected lysine plus methionine or choline on blood biochemical parameters in crossbred cows.” Indian Journal of Animal Nutrition32(3), 344-347.‏
Soltan, M. A., Mujalli, A. M., Mandour, M. A., and Abeer, M. E. S. (2012). “Effect of dietary rumen protected methionine and/or choline supplementation on rumen fermentation characteristics and productive performance of early lactating cows.” Pakistan Journal of Nutrition11(3), 221-230.‏
Spicer, L. J. (2001). “Leptin: a possible metabolic signal affecting reproduction.” Domestic Animal Endocrinology21(4), 251-270.‏
Wang, J. (2011). “Effect of FMO3 genotype and dietary choline supplementation on trimethylamine concentration in egg yolks.” PhD Diss. Northeast Agricultural Univ., Haerbin, China.‏
Xu, G., Ye, J. A., Liu, J., and Yu, Y. (2006). “Effect of rumen-protected choline addition on milk performance and blood metabolic parameters in transition dairy cows.” Asian-australasian Journal of Animal Sciences19(3), 390-395.‏
Zahra, L. C., Duffield, T. F., Leslie, K. E., Overton, T. R., Putnam, D., and LeBlanc, S. J. (2006). “Effects of rumen-protected choline and monensin on milk production and metabolism of periparturient dairy cows.” Journal of Dairy Science89(12), 4808-4818.‏
Zeisel, S. H. (1988). “Vitamin-like molecules.” In Modern Nutrition and Health and Disease, 440–452.
Zeisel, S. H., Mar, M. H., Howe, J. C., and Holden, J. M. (2003). “Concentrations of choline-containing compounds and betaine in common foods.” The Journal of Nutrition, 133(5), 1302-1307.‏
Zenobi, M. G., Gardinal, R., Zuniga, J. E., Mamedova, L. K., Driver, J. P., Barton, B. A., and Nelson, C. D. (2020). “Effect of prepartum energy intake and supplementation with ruminally protected choline on innate and adaptive immunity of multiparous Holstein cows.” Journal of Dairy Science, 103(3), 2200-2216.‏
Zom, R. L. G., Van Baal, J., Goselink, R. M. A., Bakker, J. A., De Veth, M. J., and Van Vuuren, A. M. (2011). “Effect of rumen-protected choline on performance, blood metabolites, and hepatic triacylglycerols of periparturient dairy cattle.” Journal of Dairy Science, 94(8), 4016-4027.‏